IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v11y1995i02p331-346_00.html
   My bibliography  Save this article

Unit Root Tests Based on M Estimators

Author

Listed:
  • Lucas, André

Abstract

This paper considers unit root tests based on M estimators. The asymptotic theory for these tests is developed. It is shown how the asymptotic distributions of the tests depend on nuisance parameters and how tests can be constructed that are invariant to these parameters. It is also shown that a particular linear combination of a unit root test based on the ordinary least-squares (OLS) estimator and on an M estimator converges to a normal random variate. The interpretation of this result is discussed. A simulation experiment is described, illustrating the level and power of different unit root tests for several sample sizes and data generating processes. The tests based on M estimators turn out to be more powerful than the OLS-based tests if the innovations are fat-tailed.

Suggested Citation

  • Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
  • Handle: RePEc:cup:etheor:v:11:y:1995:i:02:p:331-346_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600009191/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:11:y:1995:i:02:p:331-346_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.