IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1748.html
   My bibliography  Save this paper

Optimal Estimation under Nonstandard Conditions

Author

Listed:

Abstract

We analyze optimality properties of maximum likelihood (ML) and other estimators when the problem does not necessarily fall within the locally asymptotically normal (LAN) class, therefore covering cases that are excluded from conventional LAN theory such as unit root nonstationary time series. The classical Hájek-Le Cam optimality theory is adapted to cover this situation. We show that the expectation of certain monotone "bowl-shaped" functions of the squared estimation error are minimized by the ML estimator in locally asymptotically quadratic situations, which often occur in nonstationary time series analysis when the LAN property fails. Moreover, we demonstrate a direct connection between the (Bayesian property of) asymptotic normality of the posterior and the classical optimality properties of ML estimators.

Suggested Citation

  • Werner Ploberger & Peter C.B. Phillips, 2010. "Optimal Estimation under Nonstandard Conditions," Cowles Foundation Discussion Papers 1748, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1748
    Note: CFP 1364
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d17/d1748.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C B, 1996. "Econometric Model Determination," Econometrica, Econometric Society, vol. 64(4), pages 763-812, July.
    2. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    3. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 179-202.
    4. Peter C. B. Phillips, 2012. "Folklore Theorems, Implicit Maps, and Indirect Inference," Econometrica, Econometric Society, vol. 80(1), pages 425-454, January.
    5. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    6. Jeganathan, P., 1991. "On the Asymptotic Behavior of Least-Squares Estimators in AR Time Series with Roots Near the Unit Circle," Econometric Theory, Cambridge University Press, vol. 7(3), pages 269-306, September.
    7. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    8. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    9. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    10. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    11. Keisuke Hirano & Jack R. Porter, 2003. "Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support," Econometrica, Econometric Society, vol. 71(5), pages 1307-1338, September.
    12. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    13. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    14. Jae-Young Kim, 1998. "Large Sample Properties of Posterior Densities, Bayesian Information Criterion and the Likelihood Principle in Nonstationary Time Series Models," Econometrica, Econometric Society, vol. 66(2), pages 359-380, March.
    15. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    2. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2012. "Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Other publications TiSEM bc68a2f2-3ca3-443c-b3ac-f, Tilburg University, School of Economics and Management.
    3. Andreou, Elena & Werker, Bas J.M., 2015. "Residual-based rank specification tests for AR–GARCH type models," Journal of Econometrics, Elsevier, vol. 185(2), pages 305-331.
    4. Elena Andreou & Bas J.M. Werker, 2014. "Residual-based Rank Specification Tests for AR-GARCH type models," University of Cyprus Working Papers in Economics 02-2014, University of Cyprus Department of Economics.
    5. Hallin, M. & Werker, B.J.M. & van den Akker, R., 2015. "Optimal Pseudo-Gaussian and Rank-based Tests of the Cointegration Rank in Semiparametric Error-correction Models," Other publications TiSEM d1b040c9-db57-4e55-846f-4, Tilburg University, School of Economics and Management.
    6. Werker, Bas J M & Andreou, Elena, 2013. "Residual-based Rank Specification Tests for AR-GARCH type models," CEPR Discussion Papers 9583, C.E.P.R. Discussion Papers.
    7. Qihui Chen & Zheng Fang, 2019. "Inference on Functionals under First Order Degeneracy," Papers 1901.04861, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Werner Ploberger & Peter C.B. Phillips, 1998. "Rissanen's Theorem and Econometric Time Series," Cowles Foundation Discussion Papers 1197, Cowles Foundation for Research in Economics, Yale University.
    2. Peter C.B. Phillips, 2008. "Unit Root Model Selection," Cowles Foundation Discussion Papers 1653, Cowles Foundation for Research in Economics, Yale University.
    3. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    4. Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, September.
    5. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    6. Peter C.B. Phillips, 1994. "Nonstationary Time Series and Cointegration: Recent Books and Themes for the Future," Cowles Foundation Discussion Papers 1081, Cowles Foundation for Research in Economics, Yale University.
    7. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    8. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
    9. Han, Chirok & Phillips, Peter C. B. & Sul, Donggyu, 2014. "X-Differencing And Dynamic Panel Model Estimation," Econometric Theory, Cambridge University Press, vol. 30(1), pages 201-251, February.
    10. Phillips, Peter C. B., 2002. "New unit root asymptotics in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 111(2), pages 323-353, December.
    11. Marc Hallin & Ramon van den Akker & Bas Werker, 2009. "A class of Simple Semiparametrically Efficient Rank-Based Unit Root Tests," Working Papers ECARES 2009_001, ULB -- Universite Libre de Bruxelles.
    12. Minxian Yang, 2014. "Normality of Posterior Distribution Under Misspecification and Nonsmoothness, and Bayes Factor for Davies' Problem," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 305-336, June.
    13. Ling, Shiqing & McAleer, Michael, 2004. "Regression quantiles for unstable autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 89(2), pages 304-328, May.
    14. Cheng, Xu & Phillips, Peter C.B., 2012. "Cointegrating rank selection in models with time-varying variance," Journal of Econometrics, Elsevier, vol. 169(2), pages 155-165.
    15. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2011. "A class of simple distribution-free rank-based unit root tests," Journal of Econometrics, Elsevier, vol. 163(2), pages 200-214, August.
    16. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
    17. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2011. "A Class of Simple Distribution-free Rank-based Unit Root Tests (Revision of DP 2010-72)," Other publications TiSEM 004c9726-ec6a-4884-8238-d, Tilburg University, School of Economics and Management.
    18. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(4), pages 888-947, August.
    19. Peter C.B. Phillips, 2014. "Dynamic Panel GMM with Near Unity," Cowles Foundation Discussion Papers 1962, Cowles Foundation for Research in Economics, Yale University.
    20. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.

    More about this item

    Keywords

    Bayesian asymptotics; Asymptotic normality; Local asymptotic normality; Locally asymptotic quadratic; Optimality property of MLE; Weak convergence;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.