IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2001cf122.html
   My bibliography  Save this paper

A Generalized SSAR Model and Predictive Distribution with an Application to VaR

Author

Listed:
  • Naoto Kunitomo

    (Faculty of Economics, University of Tokyo)

  • Seisho Sato

    (Institute of Statistical Mathematics)

Abstract

The asymmetrical movements between the downward and upward phases of the sample paths of time series have been sometimes observed. By generalizing the SSAR (simultaneous switching autoregressive) models, we introduce a class of nonlinear time series models having the asymmetrical sample paths in the upward and downward phases. We show that the class of generalized SSAR models is useful for estimating the asymmetrical predictive distribution given the present and past information. Applications to the prediction based on the predictive median and the estimation of the VaR (value at risk) in financial risk management are discussed.

Suggested Citation

  • Naoto Kunitomo & Seisho Sato, 2001. "A Generalized SSAR Model and Predictive Distribution with an Application to VaR," CIRJE F-Series CIRJE-F-122, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2001cf122
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2001/2001cf122.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Seisho Sato & Naoto Kunitomo, 1996. "Some Properties Of The Maximum Likelihood Estimator In The Simultaneous Switching Autoregressive Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 287-307, May.
    5. Naoto Kunitomo & Seisho Sato, 1999. "Stationary and Non-stationary Simultaneous Switching Autoregressive Models with an Application to Financial Time Series," The Japanese Economic Review, Japanese Economic Association, vol. 50(2), pages 161-190, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekaert, Geert & Harvey, Campbell R., 1997. "Emerging equity market volatility," Journal of Financial Economics, Elsevier, vol. 43(1), pages 29-77, January.
    2. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    3. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    4. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    5. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    6. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    7. Aatola, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports P62, VATT Institute for Economic Research.
    8. Diether Beuermann & Antonios Antoniou & Alejandro Bernales, 2005. "The Dynamics of the Short-Term Interest Rate in the UK," Finance 0512029, University Library of Munich, Germany.
    9. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    10. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    11. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
    12. Siddique, Akhtar R., 2003. "Common asset pricing factors in volatilities and returns in futures markets," Journal of Banking & Finance, Elsevier, vol. 27(12), pages 2347-2368, December.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Tse, Yiuman, 1998. "International transmission of information: evidence from the Euroyen and Eurodollar futures markets," Journal of International Money and Finance, Elsevier, vol. 17(6), pages 909-929, December.
    15. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    16. Alizadeh, Amir H., 2013. "Trading volume and volatility in the shipping forward freight market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 250-265.
    17. Vetzal, Kenneth R., 1997. "Stochastic volatility, movements in short term interest rates, and bond option values," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 169-196, February.
    18. Nour Meddahi & Eric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
    19. R. Glen Donaldson & Mark J. Kamstra, 2005. "Volatility Forecasts, Trading Volume, And The Arch Versus Option‐Implied Volatility Trade‐Off," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(4), pages 519-538, December.
    20. Francis X. Diebold & Jose A. Lopez, 1995. "Measuring Volatility Dynamics," NBER Technical Working Papers 0173, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2001cf122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.