IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/98s-29.html
   My bibliography  Save this paper

Quadratic M-Estimators for ARCH-Type Processes

Author

Listed:
  • Nour Meddahi
  • Eric Renault

Abstract

This paper addresses the issue on estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads to take into account the covariance between the mean and the variance and the variance of the variance, that is the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely the QMLE, the GMM and the M-estimation. The usual univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular the importance of skewness. Cet article s'intéresse à l'estimation des modèles semiparamétriques de séries temporelles définis par leur moyenne et variance conditionnelles. Nous mettons en exergue l'importance de l'utilisation jointe des restrictions sur la moyenne et la variance. Ceci amène à tenir compte de la covariance entre la moyenne et la variance ainsi que de la variance de la variance, autrement dit la skewness et la kurtosis. Nous établissons les liens directs entre les méthodes paramétriques usuelles d'estimation, à savoir l'EPMV (Estimateur du Pseudo Maximum de Vraisemblance), les GMM et les M-estimateurs. L'EPMV usuel est, dans le cas de la non-normalité, moins efficace que l'estimateur GMM optimal. Néanmoins, l'EPMV bivarié basé sur le vecteur composé de la variable dépendante et de son carré est aussi efficace que l'estimateur GMM optimal. Une analyse Monte Carlo confirme la pertinence de notre approche, en particulier l'importance de la skewness.

Suggested Citation

  • Nour Meddahi & Eric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
  • Handle: RePEc:cir:cirwor:98s-29
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/98s-29.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    4. de Jong, F.C.J.M. & Drost, F.C. & Werker, B.J.M., 1997. "Exchange rate target zones : A new approach," Other publications TiSEM f3844464-a071-4890-8894-8, Tilburg University, School of Economics and Management.
    5. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    6. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    7. Babsiri, Mohamed El & Zakoian, Jean-Michel, 2001. "Contemporaneous asymmetry in GARCH processes," Journal of Econometrics, Elsevier, vol. 101(2), pages 257-294, April.
    8. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(4), pages 539-569, August.
    9. White, Halbert, 1982. "Instrumental Variables Regression with Independent Observations," Econometrica, Econometric Society, vol. 50(2), pages 483-499, March.
    10. Bates, Charles E. & White, Halbert, 1993. "Determination of Estimators with Minimum Asymptotic Covariance Matrices," Econometric Theory, Cambridge University Press, vol. 9(4), pages 633-648, August.
    11. Meddahi, N & Renault, E., 1996. "Aggregations and Marginalization of Garch and Stochastic Volatility Models," Papers 96.433, Toulouse - GREMAQ.
    12. Francq, Christian & Zakoïan, Jean-Michel, 2000. "Estimating Weak Garch Representations," Econometric Theory, Cambridge University Press, vol. 16(5), pages 692-728, October.
    13. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    16. Hatanaka, Michio, 1974. "An efficient two-step estimator for the dynamic adjustment model with autoregressive errors," Journal of Econometrics, Elsevier, vol. 2(3), pages 199-220, September.
    17. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    18. Adrian Pagan, 1986. "Two Stage and Related Estimators and Their Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 517-538.
    19. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-235, April.
    20. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    21. repec:cup:etheor:v:8:y:1992:i:3:p:403-06 is not listed on IDEAS
    22. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    23. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    24. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    25. repec:cup:etheor:v:9:y:1993:i:4:p:539-69 is not listed on IDEAS
    26. Wooldridge, Jeffrey M., 1991. "Specification testing and quasi-maximum- likelihood estimation," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 29-55.
    27. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    28. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    29. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    30. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    31. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    32. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    33. Bossaerts, P. & Hafner, C. & Härdle, Wolfgang, 1996. "Foreign Exchange Rates Have Surprising Volatility," SFB 373 Discussion Papers 1996,68, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    34. Rilstone, Paul, 1992. "Semiparametric IV Estimation with Parameter Dependent Instruments," Econometric Theory, Cambridge University Press, vol. 8(3), pages 403-406, September.
    35. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    36. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    37. Hansen, Lars Peter, 1985. "A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 203-238.
    38. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    39. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    40. repec:crs:wpaper:9740 is not listed on IDEAS
    41. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    42. repec:crs:wpaper:9703 is not listed on IDEAS
    43. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    44. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    45. Robinson, P M, 1991. "Best Nonlinear Three-Stage Least Squares Estimation of Certain Econometric Models," Econometrica, Econometric Society, vol. 59(3), pages 755-786, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiorentini, Gabriele & Sentana, Enrique, 2019. "Consistent non-Gaussian pseudo maximum likelihood estimators," Journal of Econometrics, Elsevier, vol. 213(2), pages 321-358.
    2. Todd, Prono, 2010. "Simple GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 20034, University Library of Munich, Germany.
    3. Hao Zhou, 2003. "Itô Conditional Moment Generator and the Estimation of Short-Rate Processes," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 250-271.
    4. Ali Alami & Eric Renault, 2001. "Risque de modèle de volatilité," CIRANO Working Papers 2001s-06, CIRANO.
    5. Amengual, Dante & Sentana, Enrique, 2010. "A comparison of mean-variance efficiency tests," Journal of Econometrics, Elsevier, vol. 154(1), pages 16-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    2. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    3. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    4. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    5. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    6. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    8. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    9. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    10. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    11. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    12. Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Other publications TiSEM 3da5ac9e-1f93-41b2-aaa0-5, Tilburg University, School of Economics and Management.
    13. Todd, Prono, 2009. "Simple, Skewness-Based GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 30994, University Library of Munich, Germany, revised 30 Jul 2011.
    14. Todd, Prono, 2010. "Simple GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 20034, University Library of Munich, Germany.
    15. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. David McMillan & Alan Speight, 2002. "Temporal aggregation, volatility components and volume in high frequency UK bond futures," The European Journal of Finance, Taylor & Francis Journals, vol. 8(1), pages 70-92.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    18. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    19. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    20. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.

    More about this item

    Keywords

    M-estimator; QMLE; GMM; heteroskedasticity; conditional skewness and kurtosis; M-estimateur; EPMV; GMM; hétéroscédasticité; skewness et kurtosis conditionnelles;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:98s-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.