IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20090038.html
   My bibliography  Save this paper

The Restricted Core for Totally Positive Games with Ordered Players

Author

Listed:
  • René van den Brink

    (VU University Amsterdam)

  • Gerard van der Laan

    (VU University Amsterdam)

  • Valeri Vasil'ev

    (Sobolev Institute of Mathematics, Russia)

Abstract

Recently, applications of cooperative game theory to economic allocation problems have gained popularity. In many such allocation problems, such as river games, queueing games and auction games, the game is totally positive (i.e., all dividends are nonnegative), and there is some hierarchical ordering of the players. In this paper we introduce the 'Restricted Core' for such 'games with ordered players' which is based on the distribution of 'dividends' taking into account the hierarchical ordering of the players. For totally positive games this solution is always contained in the 'Core', and contains the well-known 'Shapley value' (being the single-valued solution distributing the dividends equally among the players in the corresponding coalitions). For special orderings it equals the Core, respectively Shapley value. We provide an axiomatization and apply this solution to river games.

Suggested Citation

  • René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 0000. "The Restricted Core for Totally Positive Games with Ordered Players," Tinbergen Institute Discussion Papers 09-038/1, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20090038
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/09038.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean Derks & Gerard Laan & Valery Vasil’ev, 2006. "Characterizations of the Random Order Values by Harsanyi Payoff Vectors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 155-163, August.
    2. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    3. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    4. A. van den Nouweland & P. Borm & W. van Golstein Brouwers & R. Groot Bruinderink & S. Tijs, 1996. "A Game Theoretic Approach to Problems in Telecommunication," Management Science, INFORMS, vol. 42(2), pages 294-303, February.
    5. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.
    6. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
    7. Curiel, I. & Pederzoli, G. & Tijs, S.H., 1989. "Sequencing games," Other publications TiSEM cd695be5-0f54-4548-a952-2, Tilburg University, School of Economics and Management.
    8. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
    9. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    10. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    11. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    12. Winter, Eyal, 1989. "A Value for Cooperative Games with Levels Structure of Cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 227-240.
    13. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    14. Kalai, Ehud & Postlewaite, Andrew & Roberts, John, 1978. "Barriers to trade and disadvantageous middlemen: Nonmonotonicity of the core," Journal of Economic Theory, Elsevier, vol. 19(1), pages 200-209, October.
    15. Jesßs-Mario Bilbao, 1998. "Values and potential of games with cooperation structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 131-145.
    16. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    17. Greenberg, Joseph & Weber, Shlomo, 1986. "Strong tiebout equilibrium under restricted preferences domain," Journal of Economic Theory, Elsevier, vol. 38(1), pages 101-117, February.
    18. Ichiishi, Tatsuro, 1981. "Super-modularity: Applications to convex games and to the greedy algorithm for LP," Journal of Economic Theory, Elsevier, vol. 25(2), pages 283-286, October.
    19. Curiel, Imma & Pederzoli, Giorgio & Tijs, Stef, 1989. "Sequencing games," European Journal of Operational Research, Elsevier, vol. 40(3), pages 344-351, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvain Béal & Stéphane Gonzalez & Philippe Solal & Peter Sudhölter, 2023. "Axiomatic characterizations of the core without consistency," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 687-701, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 2007. "Distributing Dividends in Games with Ordered Players," Tinbergen Institute Discussion Papers 06-114/1, Tinbergen Institute.
    2. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    3. Herings, P. Jean-Jacques & van der Laan, Gerard & Talman, Dolf, 2007. "The socially stable core in structured transferable utility games," Games and Economic Behavior, Elsevier, vol. 59(1), pages 85-104, April.
    4. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    5. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    6. Mikel Álvarez-Mozos & René van den Brink & Gerard van der Laan & Oriol Tejada, 2015. "From Hierarchies to Levels: New Solutions for Games," Tinbergen Institute Discussion Papers 15-072/II, Tinbergen Institute.
    7. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    8. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.
    9. René Brink, 2012. "On hierarchies and communication," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 721-735, October.
    10. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    11. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    12. René Brink & Chris Dietz & Gerard Laan & Genjiu Xu, 2017. "Comparable characterizations of four solutions for permission tree games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(4), pages 903-923, April.
    13. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    14. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    15. Demuynck, Thomas & Rock, Bram De & Ginsburgh, Victor, 2016. "The transfer paradox in welfare space," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 1-4.
    16. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    17. Michel Grabisch & Lijue Xie, 2011. "The restricted core of games on distributive lattices: how to share benefits in a hierarchy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 189-208, April.
    18. René Brink & Chris Dietz, 2014. "Games with a local permission structure: separation of authority and value generation," Theory and Decision, Springer, vol. 76(3), pages 343-361, March.
    19. Pierre Dehez, 2017. "On Harsanyi Dividends and Asymmetric Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-36, September.
    20. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.

    More about this item

    Keywords

    Totally positive TU-game; Harsanyi dividends; Core; Shapley value; Harsanyi set; Selectope; Digraph; River game;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20090038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.