IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/331f101b-09ee-47d6-afdf-eccae8767583.html
   My bibliography  Save this paper

The Average Tree value for Hypergraph Games

Author

Listed:
  • Kang, Liying
  • Khmelnitskaya, Anna
  • Shan, Erfang
  • Talman, A.J.J.

    (Tilburg University, School of Economics and Management)

  • Zhang, Guang

    (Tilburg University, School of Economics and Management)

Abstract

We consider transferable utility cooperative games (TU games) with limited cooperation introduced by a hypergraph communication structure, the so-called hypergraph games. A hypergraph communication structure is given by a collection of coalitions, the hyperlinks of the hypergraph, for which it is assumed that only coalitions that are hyperlinks or connected unions of hyperlinks are able to cooperate and realize their worth. We introduce the average tree value for hypergraph games, which assigns to each player the average of the player’s marginal contributions with respect to a particular collection of rooted spanning trees of the hypergraph, and study its properties. We show that the average tree value is stable on the subclass of superadditive cycle-free hypergraph games. We also provide axiomatizations of the average tree value on the subclasses of cycle-free hypergraph games, hypertree games, and cycle hypergraph games.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kang, Liying & Khmelnitskaya, Anna & Shan, Erfang & Talman, A.J.J. & Zhang, Guang, 2020. "The Average Tree value for Hypergraph Games," Other publications TiSEM 331f101b-09ee-47d6-afdf-e, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:331f101b-09ee-47d6-afdf-eccae8767583
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/32324820/2020_005.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Debasis Mishra & A. Talman, 2010. "A characterization of the average tree solution for tree games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 105-111, March.
    2. van den Nouweland, Anne & Borm, Peter & Tijs, Stef, 1992. "Allocation Rules for Hypergraph Communication Situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 255-268.
    3. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    4. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    5. van den Brink, René, 2012. "Efficiency and collusion neutrality in cooperative games and networks," Games and Economic Behavior, Elsevier, vol. 76(1), pages 344-348.
    6. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    7. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    8. Koshevoy, Gleb & Talman, Dolf, 2014. "Solution concepts for games with general coalitional structure," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 19-30.
    9. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    10. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    11. Selçuk, Özer & Suzuki, Takamasa & Talman, Dolf, 2013. "Equivalence and axiomatization of solutions for cooperative games with circular communication structure," Economics Letters, Elsevier, vol. 121(3), pages 428-431.
    12. Mishra, D. & Talman, A.J.J., 2009. "A Characterization of the Average Tree Solution for Cycle-Free Graph Games," Discussion Paper 2009-17, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.
    2. Li, Daniel Li & Shan, Erfang, 2023. "Tree solutions and standardness for cycle-free graph games," Economics Letters, Elsevier, vol. 222(C).
    3. Daniel Li Li & Erfang Shan, 2024. "A new value for communication situations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(2), pages 535-551, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.
    2. Anna Khmelnitskaya & Gerard van der Laan & Dolf Talman, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Tinbergen Institute Discussion Papers 16-070/II, Tinbergen Institute.
    3. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    4. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    5. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    6. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.
    7. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    8. Özer Selçuk & Takamasa Suzuki, 2023. "Comparable axiomatizations of the average tree solution and the Myerson value," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(2), pages 333-362, June.
    9. E. Algaba & J. M. Bilbao & R. Brink & J. J. López, 2012. "The Myerson Value and Superfluous Supports in Union Stable Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 650-668, November.
    10. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    11. Encarnacion Algaba & Jesus Mario Bilbao & Rene van den Brink & Jorge J. Lopez, 2011. "The Myerson Value and Superfluous Supports in Union Stable Systems," Tinbergen Institute Discussion Papers 11-127/1, Tinbergen Institute.
    12. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    13. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    14. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    15. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    16. Anna Khmelnitskaya & Özer Selçuk & Dolf Talman, 2020. "The average covering tree value for directed graph games," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 315-333, February.
    17. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    18. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Weighted component fairness for forest games," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 144-151.
    19. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    20. Takashi Ui & Hiroyuki Kojima & Atsushi Kajii, 2011. "The Myerson value for complete coalition structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 427-443, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:331f101b-09ee-47d6-afdf-eccae8767583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.