IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20020084.html
   My bibliography  Save this paper

A Comparison of Marginal Likelihood Computation Methods

Author

Listed:
  • Charles S. Bos

    (Vrije Universiteit Amsterdam)

Abstract

In a Bayesian analysis, different models can be compared on the basis of theexpected or marginal likelihood they attain. Many methods have been devised to compute themarginal likelihood, but simplicity is not the strongest point of most methods. At the sametime, the precision of methods is often questionable.In this paper several methods are presented in a common framework. The explanation of thedifferences is followed by an application, in which the precision of the methods is testedon a simple regression model where a comparison with analytical results is possible.

Suggested Citation

  • Charles S. Bos, 2002. "A Comparison of Marginal Likelihood Computation Methods," Tinbergen Institute Discussion Papers 02-084/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20020084
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/02084.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    2. Hoeting, Jennifer & Raftery, Adrian E. & Madigan, David, 1996. "A method for simultaneous variable selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 251-270, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    2. Zhenyu Zhao & Thomas A. Severini, 2017. "Integrated likelihood computation methods," Computational Statistics, Springer, vol. 32(1), pages 281-313, March.
    3. Pierangelo De Pace, 2005. "Grid-Bootstrap Methods vs. Bayesian Analysis. Testing for Structural Breaks in the Conditional Variance of Nominal Interest Rate Spreads - Four Cases in Europe," Econometrics 0509011, University Library of Munich, Germany, revised 14 Feb 2006.
    4. Li, Gong & Shi, Jing, 2010. "Application of Bayesian model averaging in modeling long-term wind speed distributions," Renewable Energy, Elsevier, vol. 35(6), pages 1192-1202.
    5. Jochen Ranger & Jorg-Tobias Kuhn, 2012. "A flexible latent trait model for response times in tests," Psychometrika, Springer;The Psychometric Society, vol. 77(1), pages 31-47, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shigeru Iwata & Evan Tanner, 2007. "Pick Your Poison: The Exchange Rate Regime and Capital Account Volatility in Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 57(7-8), pages 363-381, September.
    2. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    3. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    4. VAN DIJK, Herman K., 1987. "Some advances in Bayesian estimations methods using Monte Carlo Integration," LIDAM Reprints CORE 783, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    6. Feliz, Raúl Aníbal & Vargas, Laura, 1994. "Una prueba econométrica del enfoque moderno de la cuenta corriente en México," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 9(2), pages 189-207.
    7. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    8. Bloemen, Hans G., 1997. "Job search theory, labour supply and unemployment duration," Journal of Econometrics, Elsevier, vol. 79(2), pages 305-325, August.
    9. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    10. Fok, Dennis & Franses, Philip Hans, 2007. "Modeling the diffusion of scientific publications," Journal of Econometrics, Elsevier, vol. 139(2), pages 376-390, August.
    11. Babula, Ronald A. & Bessler, David A. & Reeder, John & Somwaru, Agapi, 2004. "Modeling U.S. Soy-Based Markets with Directed Acyclic Graphs and Time Series Econometrics: Evaluating the U.S. Market Impacts of High Soy Meal Prices," Working Paper ID Series 15885, United States International Trade Commission, Office of Industries.
    12. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    13. James C. Rockey, 2007. "Which Democracies Pay Higher Wages?," Bristol Economics Discussion Papers 07/600, School of Economics, University of Bristol, UK.
    14. van Dijk, H. K. & Kloek, T., 1983. "Experiments With Some Alternatives For Simple Importance Sampling In Monte Carlo Integration," Econometric Institute Archives 272281, Erasmus University Rotterdam.
    15. van Dijk, H. K. & Kloek, T., 1982. "Monte Carlo Analysis Of Skew Posterior Distributions: An Illustrative Econometric Example," Econometric Institute Archives 272268, Erasmus University Rotterdam.
    16. Villani, Mattias, 2006. "Bayesian point estimation of the cointegration space," Journal of Econometrics, Elsevier, vol. 134(2), pages 645-664, October.
    17. Heckelei, Thomas & Mittelhammer, Ronald C., 1996. "Bayesian Bootstrap Analysis of Systems of Equations," Discussion Papers 18786, University of Bonn, Institute for Food and Resource Economics.
    18. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    19. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9.
    20. Rodney W. Strachan & Herman K. van Dijk, 2014. "Divergent Priors and Well Behaved Bayes Factors," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 1-31, March.

    More about this item

    Keywords

    Marginal likelihood; Bayesian analysis.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20020084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.