IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/7247.html
   My bibliography  Save this paper

Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data

Author

Listed:
  • Hoogerheide, L.F.
  • Kleibergen, F.R.
  • van Dijk, H.K.

Abstract

We propose a natural conjugate prior for the instrumental variables regression model. The prior is a natural conjugate one since the marginal prior and posterior of the structural parameter have the same functional expressions which directly reveal the update from prior to posterior. The Jeffreys prior results from a specific setting of the prior parameters and results in a marginal posterior of the structural parameter that has an identical functional form as the sampling density of the limited information maximum likelihood estimator. We construct informative priors for the Angrist-Krueger (1991) data and show that the marginal posterior of the return on education in the US coincides with the marginal posterior from the Southern region when we use the Jeffreys prior. This result occurs since the instruments are the strongest in the Southern region and the posterior using the Jeffreys prior, identical to maximum likelihood, focusses on the strongest available instruments. We construct informative priors for the other regions that make their posteriors of the return on education similar to that of the US and the Southern region. These priors show the amount of prior information needed to obtain comparable results for all regions.

Suggested Citation

  • Hoogerheide, L.F. & Kleibergen, F.R. & van Dijk, H.K., 2006. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Econometric Institute Research Papers EI 2006-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:7247
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/7247/ei200602.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steel, Mark F. J., 1991. "A Bayesian analysis of simultaneous equation models by combining recursive analytical and numerical approaches," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 83-117.
    2. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    3. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    4. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    5. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    6. Maddala, G S, 1976. "Weak Priors and Sharp Posteriors in Simultaneous Equation Models," Econometrica, Econometric Society, vol. 44(2), pages 345-351, March.
    7. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    8. Zellner, Arnold & Bauwens, Luc & Van Dijk, Herman K., 1988. "Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo methods," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 39-72.
    9. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    10. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    11. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    12. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    13. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    14. Kleibergen, Frank, 2004. "Invariant Bayesian inference in regression models that is robust against the Jeffreys-Lindley's paradox," Journal of Econometrics, Elsevier, vol. 123(2), pages 227-258, December.
    15. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    16. Villani, Mattias, 2005. "Bayesian Reference Analysis Of Cointegration," Econometric Theory, Cambridge University Press, vol. 21(2), pages 326-357, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    3. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
    4. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    5. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    6. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    7. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    8. Villani, Mattias, 2006. "Bayesian point estimation of the cointegration space," Journal of Econometrics, Elsevier, vol. 134(2), pages 645-664, October.
    9. Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004. "Bayesian Approaches to Cointegration," Discussion Papers in Economics 04/27, Division of Economics, School of Business, University of Leicester.
    10. Chao, John C. & Phillips, Peter C. B., 2002. "Jeffreys prior analysis of the simultaneous equations model in the case with n+1 endogenous variables," Journal of Econometrics, Elsevier, vol. 111(2), pages 251-283, December.
    11. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    12. Villani, Mattias, 2003. "Bayes Estimators of the Cointegration Space," Working Paper Series 150, Sveriges Riksbank (Central Bank of Sweden).
    13. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    14. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    15. Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
    16. Kleibergen, Frank, 2004. "Invariant Bayesian inference in regression models that is robust against the Jeffreys-Lindley's paradox," Journal of Econometrics, Elsevier, vol. 123(2), pages 227-258, December.
    17. Ruochen Wu & Melvyn Weeks, 2020. "A Semi-Parametric Bayesian Generalized Least Squares Estimator," Papers 2011.10252, arXiv.org, revised Jan 2023.
    18. Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
    19. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    20. Hoogerheide, L.F. & van Dijk, H.K., 2006. "A reconsideration of the Angrist-Krueger analysis on returns to education," Econometric Institute Research Papers EI 2006-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:7247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.