IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20010085.html
   My bibliography  Save this paper

Tests for Serial Independence and Linearity based on Correlation Integrals

Author

Listed:
  • Cees Diks
  • Sebastiano Manzan

    (CeNDEF, University of Amsterdam)

Abstract

We propose information theoretic tests for serial independence and linearity in time series. The test statisticsare based on the conditional mutual information, a general measure of dependence between lagged variables. In caseof rejecting the null hypothesis, this readily provides insights into the lags through which the dependence arises.The conditional mutual information is estimated using the correlation integral from chaos theory. The signi[tanceof the test statistics is determined with a permutation procedure and a parametric bootstrap in the testsfor serial independence and linearity, respectively.The size and power properties of the tests are examined numerically and illustrated with applications to somebenchmark time series.

Suggested Citation

  • Cees Diks & Sebastiano Manzan, 2001. "Tests for Serial Independence and Linearity based on Correlation Integrals," Tinbergen Institute Discussion Papers 01-085/1, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20010085
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/01085.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aparicio F. M. & Escribano A., 1998. "Information-Theoretic Analysis of Serial Dependence and Cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(3), pages 1-24, October.
    2. Diks, C.G.H., 1999. "Consistent Testing for Serial Independence," CeNDEF Working Papers 99-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Yongmiao Hong, 1998. "Testing for pairwise serial independence via the empirical distribution function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 429-453.
    4. Ngai Hang Chan & Lanh Tat Tran, 1992. "Nonparametric Tests For Serial Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(1), pages 19-28, January.
    5. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    6. P. M. Robinson, 1991. "Consistent Nonparametric Entropy-Based Testing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 437-453.
    7. Hjellvik, Vidar & Yao, Qiwei & Tjostheim, Dag, 1998. "Linearity testing using local polynominal approximation," LSE Research Online Documents on Economics 6638, London School of Economics and Political Science, LSE Library.
    8. Miguel A. Delgado, 1996. "Testing Serial Independence Using The Sample Distribution Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 271-285, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diks Cees & Manzan Sebastiano, 2002. "Tests for Serial Independence and Linearity Based on Correlation Integrals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(2), pages 1-22, July.
    2. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    3. repec:wyi:journl:002087 is not listed on IDEAS
    4. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    5. Lanh Tran & Ba Chu & Chunfeng Huang & Kim P. Huynh, 2014. "Adaptive permutation tests for serial independence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 183-208, August.
    6. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    8. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    9. Su, Liangjun & White, Halbert, 2007. "A consistent characteristic function-based test for conditional independence," Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
    10. Hong, Yongmiao, 1996. "Testing for independence between two covariance stationary time series," MPRA Paper 108731, University Library of Munich, Germany.
    11. Igor Kheifets & Carlos Velasco, 2012. "Model Adequacy Checks for Discrete Choice Dynamic Models," Working Papers w0170, New Economic School (NES).
    12. Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
    13. Mora, Juan, 1998. "A nonparametric test for serial independence of errors in linear regression," DES - Working Papers. Statistics and Econometrics. WS 4675, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Henry Lam, 2018. "Sensitivity to Serial Dependency of Input Processes: A Robust Approach," Management Science, INFORMS, vol. 64(3), pages 1311-1327, March.
    15. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    16. repec:cte:wsrepe:3729 is not listed on IDEAS
    17. Du, Zaichao, 2014. "Testing for serial independence of panel errors," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 248-261.
    18. Aparicio, Felipe M., 1997. "Searching for linear and nonlinear cointegration: a new approach," DES - Working Papers. Statistics and Econometrics. WS 6219, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Nikolaus A. Siegfried, 2002. "An information-theoretic extension to structural VAR modelling," Quantitative Macroeconomics Working Papers 20203, Hamburg University, Department of Economics.
    20. Ai, Chunrong & Sun, Li-Hsien & Zhang, Zheng & Zhu, Liping, 2024. "Testing unconditional and conditional independence via mutual information," Journal of Econometrics, Elsevier, vol. 240(2).
    21. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    22. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.

    More about this item

    Keywords

    serial independence; linearity; bootstrap; permutation test; nonparametric estimation; nonlinear time series analysis; correlation integral;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20010085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.