IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v64y2018i3p1311-1327.html
   My bibliography  Save this article

Sensitivity to Serial Dependency of Input Processes: A Robust Approach

Author

Listed:
  • Henry Lam

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

Abstract

Procedures in assessing the impact of serial dependency on performance analysis are usually built on parametrically specified models. In this paper, we propose a robust, nonparametric approach to carry out this assessment, by computing the worst-case deviation of the performance measure due to arbitrary dependence. The approach is based on optimizations, posited on the model space, that have constraints specifying the level of dependency measured by a nonparametric distance to some nominal independent and identically distributed input model. We study approximation methods for these optimizations via simulation and analysis of variance. Numerical experiments demonstrate how the proposed approach can discover the hidden impacts of dependency beyond those revealed by conventional parametric modeling and correlation studies.

Suggested Citation

  • Henry Lam, 2018. "Sensitivity to Serial Dependency of Input Processes: A Robust Approach," Management Science, INFORMS, vol. 64(3), pages 1311-1327, March.
  • Handle: RePEc:inm:ormnsc:v:64:y:2018:i:3:p:1311-1327
    DOI: 10.1287/mnsc.2016.2667
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2016.2667
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2016.2667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soumyadip Ghosh & Shane G. Henderson, 2002. "Chessboard Distributions and Random Vectors with Specified Marginals and Covariance Matrix," Operations Research, INFORMS, vol. 50(5), pages 820-834, October.
    2. C. R. Mitchell & A. S. Paulson & C. A. Beswick, 1977. "The effect of correlated exponential service times on single server tandem queues," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 24(1), pages 95-112, March.
    3. Clive Granger & Jin‐Lung Lin, 1994. "Using The Mutual Information Coefficient To Identify Lags In Nonlinear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(4), pages 371-384, July.
    4. Bahar Biller & Barry L. Nelson, 2005. "Fitting Time-Series Input Processes for Simulation," Operations Research, INFORMS, vol. 53(3), pages 549-559, June.
    5. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    6. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    7. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    8. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    9. Miron Livny & Benjamin Melamed & Athanassios K. Tsiolis, 1993. "The Impact of Autocorrelation on Queuing Systems," Management Science, INFORMS, vol. 39(3), pages 322-339, March.
    10. Henry Lam, 2016. "Robust Sensitivity Analysis for Stochastic Systems," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1248-1275, November.
    11. Ngai Hang Chan & Lanh Tat Tran, 1992. "Nonparametric Tests For Serial Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(1), pages 19-28, January.
    12. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    13. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    14. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    15. Paul Glasserman & Xingbo Xu, 2013. "Robust Portfolio Control with Stochastic Factor Dynamics," Operations Research, INFORMS, vol. 61(4), pages 874-893, August.
    16. Benjamin Melamed, 1991. "TES: A Class of Methods for Generating Autocorrelated Uniform Variates," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 317-329, November.
    17. P. M. Robinson, 1991. "Consistent Nonparametric Entropy-Based Testing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 437-453.
    18. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    2. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    3. Zhaolin Hu & L. Jeff Hong, 2022. "Robust Simulation with Likelihood-Ratio Constrained Input Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2350-2367, July.
    4. Daniel Bartl & Johannes Wiesel, 2022. "Sensitivity of multiperiod optimization problems in adapted Wasserstein distance," Papers 2208.05656, arXiv.org, revised Jun 2023.
    5. Henry Lam, 2019. "Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization," Operations Research, INFORMS, vol. 67(4), pages 1090-1105, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    2. Henry Lam, 2016. "Robust Sensitivity Analysis for Stochastic Systems," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1248-1275, November.
    3. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    4. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    5. Cohen, Asaf & Saha, Subhamay, 2021. "Asymptotic optimality of the generalized cμ rule under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 206-236.
    6. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    7. Maximilian Blesch & Philipp Eisenhauer, 2023. "Robust Decision-Making under Risk and Ambiguity," Rationality and Competition Discussion Paper Series 463, CRC TRR 190 Rationality and Competition.
    8. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    9. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    10. Spiridon Penev & Pavel V. Shevchenko & Wei Wu, 2021. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," Papers 2108.02633, arXiv.org.
    11. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    12. Huan Xu & Shie Mannor, 2012. "Distributionally Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 288-300, May.
    13. Penev, Spiridon & Shevchenko, Pavel V. & Wu, Wei, 2019. "The impact of model risk on dynamic portfolio selection under multi-period mean-standard-deviation criterion," European Journal of Operational Research, Elsevier, vol. 273(2), pages 772-784.
    14. Henry Lam, 2019. "Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization," Operations Research, INFORMS, vol. 67(4), pages 1090-1105, July.
    15. Zhaolin Hu & L. Jeff Hong, 2022. "Robust Simulation with Likelihood-Ratio Constrained Input Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2350-2367, July.
    16. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2021. "A Toolkit for Robust Risk Assessment Using F -Divergences," Management Science, INFORMS, vol. 67(10), pages 6529-6552, October.
    17. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    18. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    19. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    20. Matilla-García, Mariano & Marín, Manuel Ruiz, 2010. "A new test for chaos and determinism based on symbolic dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 600-614, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:64:y:2018:i:3:p:1311-1327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.