IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/4675.html
   My bibliography  Save this paper

A nonparametric test for serial independence of errors in linear regression

Author

Listed:
  • Mora, Juan

Abstract

A test for serial independence of regression errors, consistent in the direction of first order alternatives, is proposed. The test statistic is a function of a Hoeffding-Blum-Kiefer-Rosenblatt type of empirical process, based on residuals. The resultant statistic converges, surprisingly, to the same limiting distribution as the corresponding statistic based on true errors.

Suggested Citation

  • Mora, Juan, 1998. "A nonparametric test for serial independence of errors in linear regression," DES - Working Papers. Statistics and Econometrics. WS 4675, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:4675
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/7a9a9034-e2a6-4541-9b4b-ce2c70c2d8b7/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongmiao Hong, 1998. "Testing for pairwise serial independence via the empirical distribution function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 429-453.
    2. Miguel A. Delgado, 1996. "Testing Serial Independence Using The Sample Distribution Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 271-285, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002087 is not listed on IDEAS
    2. Cees Diks & Sebastiano Manzan, 2001. "Tests for Serial Independence and Linearity based on Correlation Integrals," Tinbergen Institute Discussion Papers 01-085/1, Tinbergen Institute.
    3. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Igor Kheifets & Carlos Velasco, 2012. "Model Adequacy Checks for Discrete Choice Dynamic Models," Working Papers w0170, New Economic School (NES).
    5. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    6. Diks Cees & Manzan Sebastiano, 2002. "Tests for Serial Independence and Linearity Based on Correlation Integrals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(2), pages 1-22, July.
    7. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    8. Lanh Tran & Ba Chu & Chunfeng Huang & Kim P. Huynh, 2014. "Adaptive permutation tests for serial independence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 183-208, August.
    9. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    10. Eunhee Kim & Sangyeol Lee, 2005. "A test for independence of two stationary infinite order autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 105-127, March.
    11. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    12. Juan Mora & Miguel A. Delgado, 1999. "- A Nonparametric Test For Serial Independence Of Regression Errors," Working Papers. Serie AD 1999-28, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    13. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    14. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    15. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    16. Kilani Ghoudi & Bruno Rémillard, 2018. "Serial independence tests for innovations of conditional mean and variance models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 3-26, March.
    17. Du, Zaichao, 2014. "Testing for serial independence of panel errors," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 248-261.
    18. Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.
    19. Kheifets, Igor L., 2018. "Multivariate specification tests based on a dynamic Rosenblatt transform," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 1-14.
    20. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    21. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.

    More about this item

    Keywords

    Serial independence tests;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:4675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.