IDEAS home Printed from https://ideas.repec.org/p/syd/wpaper/2018-04.html
   My bibliography  Save this paper

Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions

Author

Listed:
  • Morley, James
  • Wong, Benjamin

Abstract

We consider how to estimate the trend and cycle of a time series, such as real GDP, given a large information set. Our approach makes use of the Beveridge-Nelson decom- position based on a vector autoregression, but with two practical considerations. First, we show how to determine which conditioning variables span the relevant information by directly accounting for the Beveridge-Nelson trend and cycle in terms of contributions from different forecast errors. Second, we employ Bayesian shrinkage to avoid over fitting in finite samples when estimating models that are large enough to include many possible sources of information. An empirical application with up to 138 variables covering vari- ous aspects of the U.S. economy reveals that the unemployment rate, inflation, and, to a lesser extent, housing starts, aggregate consumption, stock prices, real money balances, and the federal funds rate contain relevant information beyond that in output growth for estimating the output gap, with estimates largely robust to substituting some of these variables or incorporating additional variables.

Suggested Citation

  • Morley, James & Wong, Benjamin, 2018. "Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions," Working Papers 2018-04, University of Sydney, School of Economics, revised Feb 2019.
  • Handle: RePEc:syd:wpaper:2018-04
    as

    Download full text from publisher

    File URL: http://econ-wpseries.com/2018/201804-02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    3. John B. Taylor, 2012. "Monetary Policy Rules Work and Discretion Doesn’t: A Tale of Two Eras," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(6), pages 1017-1032, September.
    4. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    5. Donald Robertson & Anthony Garratt & Stephen Wright, 2006. "Permanent vs transitory components and economic fundamentals," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 521-542.
    6. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    7. Tara M. Sinclair, 2009. "The Relationships between Permanent and Transitory Movements in U.S. Output and the Unemployment Rate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 529-542, March.
    8. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    9. Jeremy J. Nalewaik, 2010. "The Income- and Expenditure-Side Estimates of U.S. Output Growth," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(1 (Spring), pages 71-127.
    10. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    11. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2015. "Trend-Cycle Decomposition Of Output And Euro Area Inflation Forecasts: A Real-Time Approach Based On Model Combination," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 363-393, March.
    12. Evans, George & Reichlin, Lucrezia, 1994. "Information, forecasts, and measurement of the business cycle," Journal of Monetary Economics, Elsevier, vol. 33(2), pages 233-254, April.
    13. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    14. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    15. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    16. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    17. Benjamin Wong, 2015. "Do Inflation Expectations Propagate the Inflationary Impact of Real Oil Price Shocks?: Evidence from the Michigan Survey," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(8), pages 1673-1689, December.
    18. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    19. Geweke, John & Koop, Gary & van Dijk, Herman (ed.), 2011. "The Oxford Handbook of Bayesian Econometrics," OUP Catalogue, Oxford University Press, number 9780199559084.
    20. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    21. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    22. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    23. Olivier Coibion & Yuriy Gorodnichenko & Mauricio Ulate, 2018. "The Cyclical Sensitivity in Estimates of Potential Output," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 49(2 (Fall)), pages 343-441.
    24. Marek Jarociński & Bartosz Maćkowiak, 2017. "Granger Causal Priority and Choice of Variables in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 319-329, May.
    25. Kozicki, Sharon, 1999. "Multivariate detrending under common trend restrictions: Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 23(7), pages 997-1028, June.
    26. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    27. Joshua C C Chan & Angelia L Grant, 2017. "Measuring the output gap using stochastic model specification search," CAMA Working Papers 2017-02, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    28. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    29. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    30. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    31. Lutz Kilian & Clara Vega, 2011. "Do Energy Prices Respond to U.S. Macroeconomic News? A Test of the Hypothesis of Predetermined Energy Prices," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 660-671, May.
    32. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    33. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    34. Nelson, Charles R., 2008. "The Beveridge-Nelson decomposition in retrospect and prospect," Journal of Econometrics, Elsevier, vol. 146(2), pages 202-206, October.
    35. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
    36. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    37. James B. Bullard, 2012. "Inflation targeting in the USA," Speech 191, Federal Reserve Bank of St. Louis.
    38. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    39. Edelstein, Paul & Kilian, Lutz, 2009. "How sensitive are consumer expenditures to retail energy prices?," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 766-779, September.
    40. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    41. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    42. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    2. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    3. Constantinescu, Mihnea & Nguyen, Anh Dinh Minh, 2021. "A century of gaps: Untangling business cycles from secular trends," Economic Modelling, Elsevier, vol. 100(C).
    4. Francesco Furlanetto & Kåre Hagelund & Frank Hansen & Ørjan Robstad, 2020. "Norges Bank Output Gap Estimates: Forecasting Properties, Reliability and Cyclical Sensitivity," Working Paper 2020/7, Norges Bank.
    5. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
    6. Dubbert, Tore & Kempa, Bernd, 2024. "Nowcasting the output gap with shadow rates," Economics Letters, Elsevier, vol. 236(C).
    7. Tino Berger & Tore Dubbert, 2022. "Government spending effects on the business cycle in times of crisis," CQE Working Papers 10022, Center for Quantitative Economics (CQE), University of Muenster.
    8. Chalmovianský, Jakub & Němec, Daniel, 2022. "Assessing uncertainty of output gap estimates: Evidence from Visegrad countries," Economic Modelling, Elsevier, vol. 116(C).
    9. Tino Berger & Lorenzo Pozzi, 2023. "Cyclical consumption," Tinbergen Institute Discussion Papers 23-064/VI, Tinbergen Institute.
    10. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    11. Berger, Tino & Morley, James & Wong, Benjamin, 2023. "Nowcasting the output gap," Journal of Econometrics, Elsevier, vol. 232(1), pages 18-34.
      • Tino Berger & James Morley & Benjamin Wong, 2020. "Nowcasting the output gap," CAMA Working Papers 2020-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Morley, James & Rodríguez-Palenzuela, Diego & Sun, Yiqiao & Wong, Benjamin, 2023. "Estimating the euro area output gap using multivariate information and addressing the COVID-19 pandemic," European Economic Review, Elsevier, vol. 153(C).
    13. Fu, Bowen, 2023. "Measuring the trend real interest rate in a data-rich environment," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    14. Josefine Quast & Maik H. Wolters, 2023. "The Federal Reserve's output gap: The unreliability of real‐time reliability tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(7), pages 1101-1111, November.
    15. Saeed Zaman, 2021. "A Unified Framework to Estimate Macroeconomic Stars," Working Papers 21-23R2, Federal Reserve Bank of Cleveland, revised 31 May 2024.
    16. G. Cubadda & S. Grassi & B. Guardabascio, 2022. "The Time-Varying Multivariate Autoregressive Index Model," Papers 2201.07069, arXiv.org.
    17. Ochsner, Christian & Other, Lars & Thiel, Esther & Zuber, Christopher, 2024. "Demographic aging and long-run economic growth in Germany," Working Papers 02/2024, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    18. Murasawa Yasutomo, 2022. "Bayesian multivariate Beveridge–Nelson decomposition of I(1) and I(2) series with cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(3), pages 387-415, June.
    19. Manuel González-Astudillo & John M. Roberts, 2022. "When are trend–cycle decompositions of GDP reliable?," Empirical Economics, Springer, vol. 62(5), pages 2417-2460, May.
    20. Christian Ochsner & Christopher Zuber, 2022. "Die Konjunkturbereinigung der Schuldenbremse: ein Plädoyer für methodische Reformen [The Cyclical Adjustment Procedure of the German Debt Brake: a Plea for Methodical Reforms]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(11), pages 822-825, November.
    21. Francesco Furlanetto & Kåre Hagelund & Frank Hansen & Ørjan Robstad, 2023. "Norges Bank Output Gap Estimates: Forecasting Properties, Reliability, Cyclical Sensitivity and Hysteresis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(1), pages 238-267, February.
    22. Alessandro Barbarino & Travis J. Berge & Han Chen & Andrea Stella, 2020. "Which Output Gap Estimates Are Stable in Real Time and Why?," Finance and Economics Discussion Series 2020-102, Board of Governors of the Federal Reserve System (U.S.).
    23. Nataliia Ostapenko, 2022. "Do output gap estimates improve inflation forecasts in Slovakia?," Working and Discussion Papers WP 4/2022, Research Department, National Bank of Slovakia.
    24. Ioannis D. Vrontos & John Galakis & Ekaterini Panopoulou & Spyridon D. Vrontos, 2024. "Forecasting GDP growth: The economic impact of COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1042-1086, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    2. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    3. Morley, James & Rodríguez-Palenzuela, Diego & Sun, Yiqiao & Wong, Benjamin, 2023. "Estimating the euro area output gap using multivariate information and addressing the COVID-19 pandemic," European Economic Review, Elsevier, vol. 153(C).
    4. Tino Berger & Lorenzo Pozzi, 2023. "Cyclical consumption," Tinbergen Institute Discussion Papers 23-064/VI, Tinbergen Institute.
    5. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    6. Murasawa Yasutomo, 2022. "Bayesian multivariate Beveridge–Nelson decomposition of I(1) and I(2) series with cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(3), pages 387-415, June.
    7. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    8. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    9. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    10. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    11. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    12. Tim Oliver Berg, 2016. "Multivariate Forecasting with BVARs and DSGE Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 718-740, December.
    13. Kenneth Beauchemin & Saeed Zaman, 2011. "A medium scale forecasting model for monetary policy," Working Papers (Old Series) 1128, Federal Reserve Bank of Cleveland.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    15. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    16. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    17. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    18. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    19. Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016. "Forecasting China's economic growth and inflation," China Economic Review, Elsevier, vol. 41(C), pages 46-61.
    20. Hanck, Christoph & Prüser, Jan, 2016. "House prices and interest rates: Bayesian evidence from Germany," Ruhr Economic Papers 620, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item

    Keywords

    Beveridge-Nelson decomposition; output gap; Bayesian estimation; multi- variate information;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:syd:wpaper:2018-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vanessa Holcombe (email available below). General contact details of provider: https://edirc.repec.org/data/deusyau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.