IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/1295.html
   My bibliography  Save this paper

Output Gap Measurement after COVID for Colombia: Lessons from a Permanent-Transitory Approach

Author

Listed:
  • Daniel Parra-Amado
  • Camilo Granados

Abstract

We estimate the output gap for the Colombian economy explicitly accounting for the COVID-19 period. Our estimates reveal a significant $20$\% decline in the output gap but with a faster recovery compared to previous crises. Our empirical strategy follows a two-stage Bayesian vector autoregressive (BSVAR) model where i) a scaling factor in the reduced form of VAR is used to model extreme data, such as those observed around the COVID-19 period, and ii) permanent and transitory shocks are structurally identified. As a result, we obtain that a single structural shock explains the potential GDP, while the remaining shocks within the model are transitory in nature and thus can be used to estimate the output gap. We elaborate on the relative strengths of our method for drawing policy lessons and show that the improved approximation accuracy of our method allows for inflation forecasting gains through the use of Phillips curves, as well as for rule-based policy diagnostics that align more closely with the observed behavior of the Central Bank. **** RESUMEN: Se estima la brecha del producto para la economía colombiana modelando explícitamente el período del COVID-19. Como resultado se estimó una caída significativa del 20% en la brecha del producto, pero con una recuperación más rápida en comparación con crisis anteriores. La estrategia empírica sigue un modelo bayesiano de vectores autoregresivos (BSVAR) de dos etapas, donde i) se utiliza un factor de escala en la forma reducida del VAR para modelar datos extremos, como los observados durante el período del COVID-19, y ii) se identifican estructuralmente los choques permanentes y transitorios. Como resultado, obtenemos que un único choque estructural explica el PIB potencial, mientras que los choques restantes en el modelo son de naturaleza transitoria y, por tanto, pueden utilizarse para estimar la brecha del producto. Explicamos las fortalezas relativas de nuestro método para extraer lecciones de política y mostramos que la mayor precisión en la aproximación permite mejoras en la previsión de la inflación mediante el uso de curvas de Phillips, así como diagnósticos de política basados en reglas que se alinean más estrechamente con el comportamiento observado del Banco Central.

Suggested Citation

  • Daniel Parra-Amado & Camilo Granados, 2025. "Output Gap Measurement after COVID for Colombia: Lessons from a Permanent-Transitory Approach," Borradores de Economia 1295, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:1295
    DOI: 10.32468/be.1295
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.1295
    Download Restriction: no

    File URL: https://libkey.io/10.32468/be.1295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Bayesian methods; business cycles; potential output; output gaps; structural estimation; Métodos bayesianos; Ciclos Economicos; Brecha de producto; PIB potencial; Estimación estructural;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:1295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.