IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2017-02.html
   My bibliography  Save this paper

Measuring the output gap using stochastic model specification search

Author

Listed:
  • Joshua C C Chan
  • Angelia L Grant

Abstract

It is well known that different specification choices can give starkly different output gap estimates. To account for model uncertainty, we average estimates over a wide variety of popular specifications using stochastic model specification search. In particular, we consider three types of specification choices: sets of variables used in the analysis, output trend specifications and distributional assumptions. Using US data, we find that the unemployment gap is useful in estimating the output gap, but conditional on the unemployment gap, the inflation gap no longer depends on the output gap. Our results show a steady decline in trend output growth throughout the sample, and the estimate at the end of our sample is only about 1%. Moreover, data favor t over Gaussian distributed innovations, suggesting the relatively frequent occurrence of extreme events.

Suggested Citation

  • Joshua C C Chan & Angelia L Grant, 2017. "Measuring the output gap using stochastic model specification search," CAMA Working Papers 2017-02, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2017-02
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2017-01/2_2017_chan_grant.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Morley & Benjamin Wong, 2020. "Estimating and accounting for the output gap with large Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 1-18, January.
    2. Montagnoli, Alberto & Mouratidis, Konstantinos & Whyte, Kemar, 2021. "Assessing the cyclical behaviour of bank capital buffers in a finance-augmented macro-economy," Journal of International Money and Finance, Elsevier, vol. 110(C).
    3. Manuel González-Astudillo & John M. Roberts, 2022. "When are trend–cycle decompositions of GDP reliable?," Empirical Economics, Springer, vol. 62(5), pages 2417-2460, May.
    4. Ramis Khabibullin, 2019. "What measures of real economic activity slack are helpful for forecasting Russian inflation?," Bank of Russia Working Paper Series wps50, Bank of Russia.
    5. Fu, Bowen, 2020. "Is the slope of the Phillips curve time-varying? Evidence from unobserved components models," Economic Modelling, Elsevier, vol. 88(C), pages 320-340.
    6. Nataliia Ostapenko, 2022. "Do output gap estimates improve inflation forecasts in Slovakia?," Working and Discussion Papers WP 4/2022, Research Department, National Bank of Slovakia.

    More about this item

    Keywords

    model averaging; trend inflation; potential output; NAIRU; Okun’s law; Phillips curve;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2017-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.