IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.13794.html
   My bibliography  Save this paper

Adaptive Curves for Optimally Efficient Market Making

Author

Listed:
  • Viraj Nadkarni
  • Sanjeev Kulkarni
  • Pramod Viswanath

Abstract

Automated Market Makers (AMMs) are essential in Decentralized Finance (DeFi) as they match liquidity supply with demand. They function through liquidity providers (LPs) who deposit assets into liquidity pools. However, the asset trading prices in these pools often trail behind those in more dynamic, centralized exchanges, leading to potential arbitrage losses for LPs. This issue is tackled by adapting market maker bonding curves to trader behavior, based on the classical market microstructure model of Glosten and Milgrom. Our approach ensures a zero-profit condition for the market maker's prices. We derive the differential equation that an optimal adaptive curve should follow to minimize arbitrage losses while remaining competitive. Solutions to this optimality equation are obtained for standard Gaussian and Lognormal price models using Kalman filtering. A key feature of our method is its ability to estimate the external market price without relying on price or loss oracles. We also provide an equivalent differential equation for the implied dynamics of canonical static bonding curves and establish conditions for their optimality. Our algorithms demonstrate robustness to changing market conditions and adversarial perturbations, and we offer an on-chain implementation using Uniswap v4 alongside off-chain AI co-processors.

Suggested Citation

  • Viraj Nadkarni & Sanjeev Kulkarni & Pramod Viswanath, 2024. "Adaptive Curves for Optimally Efficient Market Making," Papers 2406.13794, arXiv.org.
  • Handle: RePEc:arx:papers:2406.13794
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.13794
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiahua Xu & Krzysztof Paruch & Simon Cousaert & Yebo Feng, 2021. "SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM) Protocols," Papers 2103.12732, arXiv.org, revised Mar 2023.
    2. Sanford J. Grossman & Merton H. Miller, 1988. "Liquidity and Market Structure," NBER Working Papers 2641, National Bureau of Economic Research, Inc.
    3. Rohan Tangri & Peter Yatsyshin & Elisabeth A. Duijnstee & Danilo Mandic, 2023. "Generalizing Impermanent Loss on Decentralized Exchanges with Constant Function Market Makers," Papers 2301.06831, arXiv.org.
    4. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    5. Dev Churiwala & Bhaskar Krishnamachari, 2022. "QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market Making Protocols," Papers 2211.14977, arXiv.org.
    6. Jason Milionis & Ciamac C. Moallemi & Tim Roughgarden, 2023. "Automated Market Making and Arbitrage Profits in the Presence of Fees," Papers 2305.14604, arXiv.org.
    7. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    8. Nicholas T. Chan and Christian Shelton, 2001. "An Adaptive Electronic Market-Maker," Computing in Economics and Finance 2001 146, Society for Computational Economics.
    9. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    10. Stefan Loesch & Nate Hindman & Mark B Richardson & Nicholas Welch, 2021. "Impermanent Loss in Uniswap v3," Papers 2111.09192, arXiv.org.
    11. Alex Evans, 2020. "Liquidity Provider Returns in Geometric Mean Markets," Papers 2006.08806, arXiv.org, revised Jul 2020.
    12. Jason Milionis & Ciamac C. Moallemi & Tim Roughgarden, 2023. "A Myersonian Framework for Optimal Liquidity Provision in Automated Market Makers," Papers 2303.00208, arXiv.org, revised Nov 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    2. Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
    3. Hui Niu & Siyuan Li & Jiahao Zheng & Zhouchi Lin & Jian Li & Jian Guo & Bo An, 2023. "IMM: An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making," Papers 2308.08918, arXiv.org.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    5. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    6. Nelson Vadori & Leo Ardon & Sumitra Ganesh & Thomas Spooner & Selim Amrouni & Jared Vann & Mengda Xu & Zeyu Zheng & Tucker Balch & Manuela Veloso, 2022. "Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations," Papers 2210.07184, arXiv.org, revised Aug 2023.
    7. Samuel Cohen & Marc Sabat'e Vidales & David v{S}iv{s}ka & {L}ukasz Szpruch, 2023. "Inefficiency of CFMs: hedging perspective and agent-based simulations," Papers 2302.04345, arXiv.org.
    8. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    9. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    10. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    11. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    12. Alexandru Mandes, 2016. "Algorithmic and High-Frequency Trading Strategies: A Literature Review," MAGKS Papers on Economics 201625, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    13. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    14. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    15. Gehrig, Thomas & Jackson, Matthew, 1998. "Bid-ask spreads with indirect competition among specialists," Journal of Financial Markets, Elsevier, vol. 1(1), pages 89-119, April.
    16. Leo Ardon & Nelson Vadori & Thomas Spooner & Mengda Xu & Jared Vann & Sumitra Ganesh, 2021. "Towards a fully RL-based Market Simulator," Papers 2110.06829, arXiv.org, revised Nov 2021.
    17. Yang, Qing-Qing & Ching, Wai-Ki & Gu, Jia-Wen & Siu, Tak-Kuen, 2018. "Market-making strategy with asymmetric information and regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 408-433.
    18. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    19. Shai Levi & Xiao-Jun Zhang, 2015. "Do Temporary Increases in Information Asymmetry Affect the Cost of Equity?," Management Science, INFORMS, vol. 61(2), pages 354-371, February.
    20. Carol Osler, 2012. "Market Microstructure and the Profitability of Currency Trading," Working Papers 48, Brandeis University, Department of Economics and International Business School.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.13794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.