IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/148.html
   My bibliography  Save this paper

Wavelet-Based Estimation Procedures For Seasonal Long-Memory Models

Author

Listed:
  • Brandon Whitcher

    (EURANDOM)

Abstract

The appearance of long-range dependence has been observed in a wide variety of real-word time series. So called long-memory models, which exhibit a slowly decaying autocovariance sequence and a pole at frequency zero in their spectral density function, have been used to characterize long-range dependence parsimoniously. A generalization of such models allows the pole in the spectral density function to be placed anywhere in the frequency interval causing a slowly decaying oscillating autocovariance sequence. This is known as the so called seasonal long-memory model. While an exact method for maximizing the likelihood exists and a semiparametric Whittle approximation has been proposed, we investigate two estimating procedures using the discrete wavelet packet transform: an approximate maximum likelihood method and an ordinary least squares method. We utilize the known decorrelating properties of the wavelet transform to allow us to assume a simplified variance-covariance structure for the seasonal long-memory model. We describe our computational procedures and explore the versatility gained by using the wavelet transform. As an example, we fit a seasonal long-memory model to an observed time series. The proposed wavelet-based techniques offer useful and computationally efficient alternatives to previous time and frequency domain methods.

Suggested Citation

  • Brandon Whitcher, 2000. "Wavelet-Based Estimation Procedures For Seasonal Long-Memory Models," Computing in Economics and Finance 2000 148, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:148
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper148.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    2. Ooms, M., 1995. "Flexible Seasonal Long Memory and Economic Time Series," Econometric Institute Research Papers EI 9515-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Ignacio N. Lobato, 1997. "Semiparametric estimation of seasonal long memory models: theory and an application to the modeling of exchange rates," Investigaciones Economicas, Fundación SEPI, vol. 21(2), pages 273-296, May.
    4. Jensen Mark J., 1999. "An Approximate Wavelet MLE of Short- and Long-Memory Parameters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-17, January.
    5. Arteche, Josu & Robinson, Peter M., 1998. "Seasonal and cyclical long memory," LSE Research Online Documents on Economics 2241, London School of Economics and Political Science, LSE Library.
    6. Mark J. Jensen, 1997. "Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter," Econometrics 9710002, University Library of Munich, Germany.
    7. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    2. Reisen, Valderio Anselmo & Rodrigues, Alexandre L. & Palma, Wilfredo, 2006. "Estimation of seasonal fractionally integrated processes," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 568-582, January.
    3. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi‐Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    4. Voges, Michelle & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Seasonal long memory in intraday volatility and trading volume of Dow Jones stocks," Hannover Economic Papers (HEP) dp-599, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    6. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    7. Dominique Guegan & Laurent Ferrara, 2008. "Fractional and seasonal filtering," PSE-Ecole d'économie de Paris (Postprint) halshs-00646178, HAL.
    8. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    9. Laurent Ferrara & Dominique Guegan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Post-Print halshs-00277379, HAL.
    10. Voges, Michelle & Sibbertsen, Philipp, 2021. "Cyclical fractional cointegration," Econometrics and Statistics, Elsevier, vol. 19(C), pages 114-129.
    11. Dominique Guegan & Zhiping Lu, 2009. "Wavelet Method for Locally Stationary Seasonal Long Memory Processes," Post-Print halshs-00375531, HAL.
    12. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Post-Print halshs-00185370, HAL.
    13. Wilfredo Palma & Ngai Hang Chan, 2005. "Efficient Estimation of Seasonal Long‐Range‐Dependent Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 863-892, November.
    14. Laurent Ferrara & Dominique Guégan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-10.
    15. Guglielmo Caporale & Luis Gil-Alana, 2007. "Testing for deterministic and stochastic cycles in macroeconomic time series," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 34(2), pages 155-169, April.
    16. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    17. L.A. Gil-Alanaa, 2007. "Testing The Existence of Multiple Cycles in Financial and Economic Time Series," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 1-20, May.
    18. repec:ehu:biltok:5744 is not listed on IDEAS
    19. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    20. repec:ehu:biltok:5567 is not listed on IDEAS
    21. repec:ebl:ecbull:v:3:y:2004:i:7:p:1-10 is not listed on IDEAS
    22. Laurent Ferrara & Dominique Guegan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Post-Print halshs-00283710, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.