IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00283710.html
   My bibliography  Save this paper

Business surveys modelling with Seasonal-Cyclical Long Memory models

Author

Listed:
  • Laurent Ferrara

    (DGEI-DAMEP - Banque de France)

  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Business surveys are an important element in the analysis of the short-term economic situation because of the timeliness and nature of the information they convey. Especially, surveys are often involved in econometric models in order to provide an early assessment of the current state of the economy, which is of great interest for policy-makers. In this paper, we focus on non-seasonally adjusted business surveys released by the European Commission. We introduce an innovative way for modelling those series taking the persistence of the seasonal roots into account through seasonal-cyclical long memory models. We empirically prove that such models produce more accurate forecasts than classical seasonal linear models.

Suggested Citation

  • Laurent Ferrara & Dominique Guegan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Post-Print halshs-00283710, HAL.
  • Handle: RePEc:hal:journl:halshs-00283710
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00283710
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00283710/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes: a Monte Carlo study," Documents de travail du Centre d'Economie de la Sorbonne b08012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00185370, HAL.
    3. Luis A. Gil-Alana, 2006. "Testing Seasonality in the Context of Fractionally Integrated Processes," Annals of Economics and Statistics, GENES, issue 81, pages 69-91.
    4. Arteche, Josu & Robinson, Peter M., 1998. "Seasonal and cyclical long memory," LSE Research Online Documents on Economics 2241, London School of Economics and Political Science, LSE Library.
    5. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    6. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    7. Laurent Ferrara, 2007. "Point and interval nowcasts of the Euro area IPI," Applied Economics Letters, Taylor & Francis Journals, vol. 14(2), pages 115-120.
    8. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    9. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes : a Monte Carlo study," Post-Print halshs-00259193, HAL.
    10. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    11. repec:adr:anecst:y:2006:i:81:p:03 is not listed on IDEAS
    12. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    2. Artiach, Miguel, 2012. "Leverage, skewness and amplitude asymmetric cycles," MPRA Paper 41267, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Ferrara & Dominique Guegan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Post-Print halshs-00277379, HAL.
    2. Laurent Ferrara & Dominique Guégan, 2008. "Business surveys modelling with Seasonal-Cyclical Long Memory models," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-10.
    3. repec:ebl:ecbull:v:3:y:2008:i:29:p:1-10 is not listed on IDEAS
    4. Dominique Guegan & Laurent Ferrara, 2008. "Fractional and seasonal filtering," PSE-Ecole d'économie de Paris (Postprint) halshs-00646178, HAL.
    5. Soares, Lacir Jorge & Souza, Leonardo Rocha, 2006. "Forecasting electricity demand using generalized long memory," International Journal of Forecasting, Elsevier, vol. 22(1), pages 17-28.
    6. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    7. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    8. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    9. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Post-Print halshs-00185370, HAL.
    10. L.A. Gil-Alanaa, 2007. "Testing The Existence of Multiple Cycles in Financial and Economic Time Series," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 1-20, May.
    11. Souza, Leonardo Rocha & Soares, Lacir Jorge, 2003. "Forecasting electricity load demand: analysis of the 2001 rationing period in Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 491, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    12. Voges, Michelle & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Seasonal long memory in intraday volatility and trading volume of Dow Jones stocks," Hannover Economic Papers (HEP) dp-599, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    13. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes: a Monte Carlo study," Documents de travail du Centre d'Economie de la Sorbonne b08012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    14. Dominique Guegan & Zhiping Lu, 2009. "Wavelet Method for Locally Stationary Seasonal Long Memory Processes," Post-Print halshs-00375531, HAL.
    15. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    16. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    17. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes : a Monte Carlo study," Post-Print halshs-00259193, HAL.
    18. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    19. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi‐Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    20. Guglielmo Caporale & Luis Gil-Alana, 2006. "Long memory at the long run and at the cyclical frequencies: modelling real wages in England, 1260–1994," Empirical Economics, Springer, vol. 31(1), pages 83-93, March.
    21. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00283710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.