IDEAS home Printed from https://ideas.repec.org/a/kap/empiri/v34y2007i2p155-169.html
   My bibliography  Save this article

Testing for deterministic and stochastic cycles in macroeconomic time series

Author

Listed:
  • Guglielmo Caporale
  • Luis Gil-Alana

Abstract

In this paper we use a statistical procedure which is appropriate to test for deterministic and stochastic (stationary and nonstationary) cycles in macroeconomic time series. These tests have standard null and local limit distributions and are easy to apply to raw time series. Monte Carlo evidence shows that they perform relatively well in the case of functional misspecification in the cyclical structure of the series. As an example, we use this approach to test for the presence of cycles in US real GDP.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Guglielmo Caporale & Luis Gil-Alana, 2007. "Testing for deterministic and stochastic cycles in macroeconomic time series," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 34(2), pages 155-169, April.
  • Handle: RePEc:kap:empiri:v:34:y:2007:i:2:p:155-169
    DOI: 10.1007/s10663-007-9033-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10663-007-9033-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10663-007-9033-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Violetta Dalla & Javier Hidalgo, 2005. "A Parametric Bootstrap Test for Cycles," STICERD - Econometrics Paper Series 486, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Arteche, Josu & Robinson, Peter M., 1998. "Seasonal and cyclical long memory," LSE Research Online Documents on Economics 2241, London School of Economics and Political Science, LSE Library.
    3. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1994. "On Generalized Fractional Processes – A Correction," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 561-562, September.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. Dalla, Violetta & Hidalgo, Javier, 2005. "A parametric bootstrap test for cycles," LSE Research Online Documents on Economics 6829, London School of Economics and Political Science, LSE Library.
    6. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    7. Gregoir, Stéphane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part Ii," Econometric Theory, Cambridge University Press, vol. 15(4), pages 469-518, August.
    8. Dalla, Violetta & Hidalgo, Javier, 2005. "A parametric bootstrap test for cycles," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 219-261.
    9. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    2. Guglielmo Maria Caporale & Luis A. Gil-Alana & Carlos Poza, 2021. "Cycles and Long-Range Behaviour in the European Stock Markets," Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 293-302, Springer.
    3. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    4. Luis A. Gil-Alana & Juan Carlos Cuestas, 2012. "A Non-linear Approach with Long Range Dependence based on Chebyshev Polynomials," Faculty Working Papers 14/12, School of Economics and Business Administration, University of Navarra.
    5. L.A. Gil-Alanaa, 2007. "Testing The Existence of Multiple Cycles in Financial and Economic Time Series," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 1-20, May.
    6. Guglielmo Maria Caporale & Luis Gil-Alana, 2012. "Long Memory and Volatility Dynamics in the US Dollar Exchange Rate," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 105-136, March - J.
    7. Gil-Alana, Luis A. & Trani, Tommaso, 2019. "The cyclical structure of the UK inflation rate: 1210–2016," Economics Letters, Elsevier, vol. 181(C), pages 182-185.
    8. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    9. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    10. Maria Caporale, Guglielmo & A. Gil-Alana, Luis, 2011. "Multi-Factor Gegenbauer Processes and European Inflation Rates," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 26, pages 386-409.
    11. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    12. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2014. "Persistence and cycles in US hours worked," Economic Modelling, Elsevier, vol. 38(C), pages 504-511.
    13. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    14. Gil-Alana, Luis A. & Gupta, Rangan, 2014. "Persistence and cycles in historical oil price data," Energy Economics, Elsevier, vol. 45(C), pages 511-516.
    15. Masaki Narukawa, 2016. "Semiparametric Whittle estimation of a cyclical long-memory time series based on generalised exponential models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 272-295, June.
    16. Cuestas Juan Carlos & Gil-Alana Luis Alberiko, 2016. "Testing for long memory in the presence of non-linear deterministic trends with Chebyshev polynomials," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 57-74, February.
    17. repec:hal:journl:peer-00815563 is not listed on IDEAS
    18. Luis A. Gil-Alana, 2009. "Time series modelling of sunspot numbers using long range cyclical dependence," Faculty Working Papers 06/09, School of Economics and Business Administration, University of Navarra.
    19. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    20. Voges, Michelle & Leschinski, Christian & Sibbertsen, Philipp, 2017. "Seasonal long memory in intraday volatility and trading volume of Dow Jones stocks," Hannover Economic Papers (HEP) dp-599, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    21. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.

    More about this item

    Keywords

    Deterministic cycles; Stochastic cycles; Long memory; C22;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:empiri:v:34:y:2007:i:2:p:155-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.