IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/04-265.html
   My bibliography  Save this paper

Work Continuity Constraints In Project Scheduling

Author

Listed:
  • M. VANHOUCKE

Abstract

Repetitive projects involve the repetition of activities along the stages of the project. Since the resources required to perform these activities move from one stage to the other, a main objective of scheduling these projects is to maintain the continuity of work of these resources so as to minimize the idle time of resources. This requirement, often referred to as work continuity constraints, involves a trade-off between total project duration and the resource idle time. The contribution of this paper is threefold. Firstly, we provide an extensive literature summary of the topic under study. Although most research papers deal with the scheduling of construction projects, we show that this can be extended to many other environments. Secondly, we propose an exact search procedure for scheduling repetitive projects with work continuity constraints. This algorithm iteratively shifts repeating activities further in time in order to decrease the resource idle time. We have embedded this recursive search procedure in a horizon-varying algorithm in order to detect the complete trade-off profile between resource idle time and project duration. The procedure has been coded in Visual C++ and has been validated on a randomly generated problem set. Finally, we illustrate the concepts on three examples. First, the use our new algorithm is illustrated on a small fictive problem example from literature. In a second example, we show that work continuity constraints involve a tradeoff between total project duration and the resource idle time. A last example describes the scheduling of a well-known real-life project that aims at the construction of a tunnel at the Westerschelde in the Netherlands.

Suggested Citation

  • M. Vanhoucke, 2004. "Work Continuity Constraints In Project Scheduling," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/265, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:04/265
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_04_265.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shtub, Avraham & LeBlanc, Larry J. & Cai, Ziyong, 1996. "Scheduling programs with repetitive projects: A comparison of a simulated annealing, a genetic and a pair-wise swap algorithm," European Journal of Operational Research, Elsevier, vol. 88(1), pages 124-138, January.
    2. M. Vanhoucke & K. Van Osselaer, 2004. "Work Continuity In A Real-Life Schedule: The Westerschelde Tunnel," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/271, Ghent University, Faculty of Economics and Business Administration.
    3. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    4. Mario Vanhoucke & Erik Demeulemeester & Willy Herroelen, 2001. "On Maximizing the Net Present Value of a Project Under Renewable Resource Constraints," Management Science, INFORMS, vol. 47(8), pages 1113-1121, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalied Hesham Hyari & Khaled El-Rayes & Mohammad El-Mashaleh, 2009. "Automated trade-off between time and cost in planning repetitive construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 27(8), pages 749-761.
    2. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
    3. M. Vanhoucke, 2007. "An electromagnetic time/cost trade-off optimization in project scheduling," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/457, Ghent University, Faculty of Economics and Business Administration.
    4. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    2. M. Vanhoucke, 2006. "A scatter search procedure for maximizing the net present value of a project under renewable resource constraints," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/417, Ghent University, Faculty of Economics and Business Administration.
    3. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    4. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
    5. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    6. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    7. M. Vanhoucke, 2002. "Optimal Due Date Assignment In Project Scheduling," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 02/159, Ghent University, Faculty of Economics and Business Administration.
    8. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    9. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    10. Tubetov, Dulat & Maart, Syster Christin & Musshoff, Oliver, 2012. "Comparison of the investment behavior of Kazakhstani and German farmers: An experimental approach," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124650, Agricultural and Applied Economics Association.
    11. Cheung, Grace & Davies, Peter J. & Trück, Stefan, 2016. "Financing alternative energy projects: An examination of challenges and opportunities for local government," Energy Policy, Elsevier, vol. 97(C), pages 354-364.
    12. Neumann, Klaus & Schwindt, Christoph & Trautmann, Norbert, 2005. "Scheduling of continuous and discontinuous material flows with intermediate storage restrictions," European Journal of Operational Research, Elsevier, vol. 165(2), pages 495-509, September.
    13. Kai Watermeyer & Jürgen Zimmermann, 2022. "A partition-based branch-and-bound algorithm for the project duration problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 575-602, June.
    14. Kai Watermeyer & Jürgen Zimmermann, 2020. "A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 427-460, June.
    15. Domingo A. Tarzia, 2016. "Properties of the financial break-even point in a simple investment project as a function of the discount rate," Papers 1611.03740, arXiv.org.
    16. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
    17. Yukang He & Tao Jia & Weibo Zheng, 2024. "Simulated annealing for centralised resource-constrained multiproject scheduling to minimise the maximal cash flow gap under different payment patterns," Annals of Operations Research, Springer, vol. 338(1), pages 115-149, July.
    18. C-C Chang & R-S Chen, 2007. "Project advancement and its applications to multi-air-route quality budget allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1008-1020, August.
    19. Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2000. "A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints," Management Science, INFORMS, vol. 46(10), pages 1365-1384, October.
    20. Tubetov, Dulat & Maart, Syster Christin & Musshoff, Oliver, 2012. "Comparison of the Investment Behavior of German and Kazakhstani Farmers: an Experimental Approach," GlobalFood Discussion Papers 122422, Georg-August-Universitaet Goettingen, GlobalFood, Department of Agricultural Economics and Rural Development.

    More about this item

    Keywords

    Project Management; CPM; work continuity; repetitive project scheduling.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:04/265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nathalie Verhaeghe (email available below). General contact details of provider: https://edirc.repec.org/data/ferugbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.