IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v243y2015i1p97-108.html
   My bibliography  Save this article

An effective approach for scheduling coupled activities in development projects

Author

Listed:
  • Lin, Jun
  • Qian, Yanjun
  • Cui, Wentian
  • Goh, Thong Ngee

Abstract

One of the greatest challenges in managing product development projects is identifying an appropriate sequence of many coupled activities. The current study presents an effective approach for determining the activity sequence with minimum total feedback time in a design structure matrix (DSM). First, a new formulation of the optimization problem is proposed, which allows us to obtain optimal solutions in a reasonable amount of time for problems up to 40 coupled activities. Second, two simple rules are proposed, which can be conveniently used by management to reduce the total feedback time. We also prove that if the sequence of activities in a subproblem is altered, then the change of total feedback time in the overall problem equals to the change in the subproblem. Because the optimization problem is NP-complete, we further develop a heuristic approach that is able to provide good solutions for large instances. To illustrate its application, we apply the presented approach to the design of balancing machines in an international firm. Finally, we perform a large number of random experiments to demonstrate that the presented approach outperforms existing state-of-art heuristics.

Suggested Citation

  • Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
  • Handle: RePEc:eee:ejores:v:243:y:2015:i:1:p:97-108
    DOI: 10.1016/j.ejor.2014.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714009230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert P. Smith & Steven D. Eppinger, 1997. "A Predictive Model of Sequential Iteration in Engineering Design," Management Science, INFORMS, vol. 43(8), pages 1104-1120, August.
    2. Lin, Jun & Chai, Kah Hin & Wong, Yoke San & Brombacher, Aarnout C., 2008. "A dynamic model for managing overlapped iterative product development," European Journal of Operational Research, Elsevier, vol. 185(1), pages 378-392, February.
    3. Bianco, Lucio & Caramia, Massimiliano, 2012. "An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 219(1), pages 73-85.
    4. Divsalar, A. & Vansteenwegen, P. & Sörensen, K. & Cattrysse, D., 2014. "A memetic algorithm for the orienteering problem with hotel selection," European Journal of Operational Research, Elsevier, vol. 237(1), pages 29-49.
    5. Lin, Jun & Chai, Kah Hin & Brombacher, Aarnout C. & Wong, Yoke San, 2009. "Optimal overlapping and functional interaction in product development," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1158-1169, August.
    6. Viswanathan Krishnan & Steven D. Eppinger & Daniel E. Whitney, 1997. "A Model-Based Framework to Overlap Product Development Activities," Management Science, INFORMS, vol. 43(4), pages 437-451, April.
    7. A D Chaney & R F Deckro & J T Moore, 2013. "Scheduling reconstruction operations with modes of execution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(6), pages 898-911, June.
    8. V. Krishnan & Karl T. Ulrich, 2001. "Product Development Decisions: A Review of the Literature," Management Science, INFORMS, vol. 47(1), pages 1-21, January.
    9. Ahmadi, Reza & Roemer, Thomas A. & Wang, Robert H., 2001. "Structuring product development processes," European Journal of Operational Research, Elsevier, vol. 130(3), pages 539-558, May.
    10. Eppinger, Steven D. & Browning, Tyson R., 2012. "Design Structure Matrix Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262017520, December.
    11. Lin, Jun & Qian, Yanjun & Cui, Wentian & Miao, Zhanli, 2010. "Overlapping and communication policies in product development," European Journal of Operational Research, Elsevier, vol. 201(3), pages 737-750, March.
    12. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    13. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    14. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    15. Qian, Yanjun & Xie, Min & Goh, Thong Ngee & Lin, Jun, 2010. "Optimal testing strategies in overlapped design process," European Journal of Operational Research, Elsevier, vol. 206(1), pages 131-143, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Junguang & Song, Xiwei & Díaz, Estrella, 2016. "Project buffer sizing of a critical chain based on comprehensive resource tightness," European Journal of Operational Research, Elsevier, vol. 248(1), pages 174-182.
    2. Bahram Alidaee & Haibo Wang & R. Bryan Kethley & Frank Landram, 2019. "A unified view of parallel machine scheduling with interdependent processing rates," Journal of Scheduling, Springer, vol. 22(5), pages 499-515, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Yanjun & Xie, Min & Goh, Thong Ngee & Lin, Jun, 2010. "Optimal testing strategies in overlapped design process," European Journal of Operational Research, Elsevier, vol. 206(1), pages 131-143, October.
    2. Limon, Yasemin & Tang, Christopher S. & Tanrısever, Fehmi, 2024. "Process choice under asymmetric competition with exogenous and endogenous product success probabilities," International Journal of Production Economics, Elsevier, vol. 275(C).
    3. Lin, Jun & Qian, Yanjun & Cui, Wentian & Miao, Zhanli, 2010. "Overlapping and communication policies in product development," European Journal of Operational Research, Elsevier, vol. 201(3), pages 737-750, March.
    4. Nitindra R. Joglekar & Ali A. Yassine & Steven D. Eppinger & Daniel E. Whitney, 2001. "Performance of Coupled Product Development Activities with a Deadline," Management Science, INFORMS, vol. 47(12), pages 1605-1620, December.
    5. Thomas A. Roemer & Reza Ahmadi, 2004. "Concurrent Crashing and Overlapping in Product Development," Operations Research, INFORMS, vol. 52(4), pages 606-622, August.
    6. Nagesh N. Murthy & Haikady N. Nagaraja & Hossein Rikhtehgar Berenji, 2023. "Managing concurrency in cyclical projects under stochastic task environments: Vaccine development projects during pandemics," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 951-971, March.
    7. Foad Iravani & Sriram Dasu & Reza Ahmadi, 2012. "A Hierarchical Framework for Organizing a Software Development Process," Operations Research, INFORMS, vol. 60(6), pages 1310-1322, December.
    8. Lin, Jun & Chai, Kah Hin & Brombacher, Aarnout C. & Wong, Yoke San, 2009. "Optimal overlapping and functional interaction in product development," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1158-1169, August.
    9. Manuel E. Sosa & Jürgen Mihm & Tyson R. Browning, 2013. "Linking Cyclicality and Product Quality," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 473-491, July.
    10. Rauniar, Rupak & Doll, William & Rawski, Greg & Hong, Paul, 2008. "Shared knowledge and product design glitches in integrated product development," International Journal of Production Economics, Elsevier, vol. 114(2), pages 723-736, August.
    11. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    12. Gautam, Naveen & Singh, Nanua, 2008. "Lean product development: Maximizing the customer perceived value through design change (redesign)," International Journal of Production Economics, Elsevier, vol. 114(1), pages 313-332, July.
    13. Dewil, R. & Vansteenwegen, P. & Cattrysse, D. & Van Oudheusden, D., 2015. "A minimum cost network flow model for the maximum covering and patrol routing problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 27-36.
    14. Kai Watermeyer & Jürgen Zimmermann, 2020. "A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 427-460, June.
    15. Christian Terwiesch & Christoph H. Loch & Arnoud De Meyer, 2002. "Exchanging Preliminary Information in Concurrent Engineering: Alternative Coordination Strategies," Organization Science, INFORMS, vol. 13(4), pages 402-419, August.
    16. Thomke, Stefan H., 1998. "Simulation, learning and R&D performance: Evidence from automotive development," Research Policy, Elsevier, vol. 27(1), pages 55-74, May.
    17. Annika Lorenz & Michael Raven & Knut Blind, 2019. "The role of standardization at the interface of product and process development in biotechnology," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1097-1133, August.
    18. Gülru F. Özkan-Seely & Cheryl Gaimon & Stylianos Kavadias, 2015. "Dynamic Knowledge Transfer and Knowledge Development for Product and Process Design Teams," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 177-190, May.
    19. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    20. Pankaj Setia & Balaji Rajagopalan & Vallabh Sambamurthy & Roger Calantone, 2012. "How Peripheral Developers Contribute to Open-Source Software Development," Information Systems Research, INFORMS, vol. 23(1), pages 144-163, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:243:y:2015:i:1:p:97-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.