IDEAS home Printed from https://ideas.repec.org/a/taf/conmgt/v27y2009i8p749-761.html
   My bibliography  Save this article

Automated trade-off between time and cost in planning repetitive construction projects

Author

Listed:
  • Khalied Hesham Hyari
  • Khaled El-Rayes
  • Mohammad El-Mashaleh

Abstract

An automated model is developed to support the optimization of the planning and scheduling of repetitive construction projects. The model provides the capability of optimizing two important objectives commonly sought in scheduling repetitive construction projects: minimizing project duration; and minimizing project cost. The model performs this multi-objective optimization using a genetic algorithm approach. The output of the model is a set of optimal solutions that represent the trade-off between time and cost in planning repetitive construction projects. Furthermore, the model can be utilized to find a single scheduling solution that provides the minimum overall project cost by simply adding project indirect cost to the obtained project direct cost for each of the obtained scheduling solutions on the Pareto optimal curve. Other important time-related costs are also considered in the model including: early completion incentives, late completion penalties and lane rental costs. Providing the planners of repetitive construction projects with an automated set of optimal time-cost trade-off solutions should contribute to cost-effective and speedy delivery of this type of construction project. An application example is analysed to illustrate the use of the model and demonstrate its capabilities in generating optimal trade-off solutions between minimizing the project time and cost for repetitive construction projects.

Suggested Citation

  • Khalied Hesham Hyari & Khaled El-Rayes & Mohammad El-Mashaleh, 2009. "Automated trade-off between time and cost in planning repetitive construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 27(8), pages 749-761.
  • Handle: RePEc:taf:conmgt:v:27:y:2009:i:8:p:749-761
    DOI: 10.1080/01446190903117793
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/01446190903117793
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01446190903117793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Vanhoucke, 2004. "Work Continuity Constraints In Project Scheduling," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/265, Ghent University, Faculty of Economics and Business Administration.
    2. Ahmed Hassanein & Osama Moselhi, 2005. "Accelerating linear projects," Construction Management and Economics, Taylor & Francis Journals, vol. 23(4), pages 377-385.
    3. Khaled El-Rayes & Osama Moselhi, 1998. "Resource-driven scheduling of repetitive activities," Construction Management and Economics, Taylor & Francis Journals, vol. 16(4), pages 433-446.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
    2. M. Vanhoucke, 2007. "An electromagnetic time/cost trade-off optimization in project scheduling," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/457, Ghent University, Faculty of Economics and Business Administration.
    3. M. Vanhoucke & K. Van Osselaer, 2004. "Work Continuity In A Real-Life Schedule: The Westerschelde Tunnel," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/271, Ghent University, Faculty of Economics and Business Administration.
    4. Khaled El-Rayes & Ramaneetharan Ramanathan & Osama Moselhi, 2002. "An object-oriented model for planning and control of housing construction," Construction Management and Economics, Taylor & Francis Journals, vol. 20(3), pages 201-210.
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    6. Duc-Hoc Tran & Jui-Sheng Chou & Duc-Long Luong, 2022. "Optimizing non-unit repetitive project resource and scheduling by evolutionary algorithms," Operational Research, Springer, vol. 22(1), pages 77-103, March.
    7. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    8. Ahmed Hassanein & Osama Moselhi, 2005. "Accelerating linear projects," Construction Management and Economics, Taylor & Francis Journals, vol. 23(4), pages 377-385.
    9. Pierre Bonnal & Didier Gourc & Ari-pekka Hameri & Germain Lacoste, 2005. "A linear-discrete scheduling model for the resource-constrained project scheduling problem," Construction Management and Economics, Taylor & Francis Journals, vol. 23(8), pages 797-814.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:27:y:2009:i:8:p:749-761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCME20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.