IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/344.html
   My bibliography  Save this paper

Generalised partial autocorrelations and the mutual information between past and future

Author

Listed:

Abstract

The paper introduces the generalised partial autocorrelation (GPAC) coefficients of a stationary stochastic process. The latter are related to the generalised autocovariances, the inverse Fourier transform coefficients of a power transformation of the spectral density function. By interpreting the generalised partial autocorrelations as the partial autocorrelation coefficients of an auxiliary process, we derive their properties and relate them to essential features of the original process. Based on a parameterisation suggested by Barndorff-Nielsen and Schou (1973) and on Whittle likelihood, we develop an estimation strategy for the GPAC coefficients. We further prove that the GPAC coefficients can be used to estimate the mutual information between the past and the future of a time series.

Suggested Citation

  • Alessandra Luati & Tommaso Proietti, 2015. "Generalised partial autocorrelations and the mutual information between past and future," CEIS Research Paper 344, Tor Vergata University, CEIS, revised 05 Jun 2015.
  • Handle: RePEc:rtv:ceisrp:344
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP344.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francesco Battaglia, 1983. "Inverse Autocovariances And A Measure Of Linear Determinism For A Stationary Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(2), pages 79-87, March.
    2. Lei Li & Zhongjie Xie, 1996. "Model Selection And Order Determination For Time Series By Information Between The Past And The Future," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 65-84, January.
    3. Alessandra Luati & Tommaso Proietti & Marco Reale, 2012. "The Variance Profile," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 607-621, June.
    4. Barndorff-Nielsen, O. & Schou, G., 1973. "On the parametrization of autoregressive models by partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 3(4), pages 408-419, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proietti, Tommaso & Luati, Alessandra, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," MPRA Paper 45280, University Library of Munich, Germany.
    2. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
    3. Alessandra Luati & Francesca Papagni & Tommaso Proietti, 2021. "Efficient Nonparametric Estimation of Generalized Autocovariances," CEIS Research Paper 515, Tor Vergata University, CEIS, revised 14 Oct 2021.
    4. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    5. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    6. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    7. Philippe, Anne, 2006. "Bayesian analysis of autoregressive moving average processes with unknown orders," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1904-1923, December.
    8. Ilya Archakov & Peter Reinhard Hansen & Yiyao Luo, 2024. "A new method for generating random correlation matrices," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 188-212.
    9. Gabriele Fiorentini & Enrique Sentana, 2016. "Neglected serial correlation tests in UCARIMA models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 121-178, March.
    10. Fitzgibbon, L.J., 2006. "On sampling stationary autoregressive model parameters uniformly in r2 value," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 349-352, February.
    11. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    12. Neuhoff, Daniel, 2015. "Dynamics of real per capita GDP," SFB 649 Discussion Papers 2015-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    14. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    15. Alexander Meyer-Gohde & Daniel Neuhoff, 2015. "Generalized Exogenous Processes in DSGE: A Bayesian Approach," SFB 649 Discussion Papers SFB649DP2015-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Maravall, Agustín, 1992. "Missing observations and additive outliers in time series models," UC3M Working papers. Economics 2888, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Tommaso Proietti & Alessandro Giovannelli, 2018. "A Durbin–Levinson regularized estimator of high-dimensional autocovariance matrices," Biometrika, Biometrika Trust, vol. 105(4), pages 783-795.
    18. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
    19. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    20. Ku, Simon F., 1997. "Limited distribution of sample partial autocorrelations: A matrix approach," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 121-143, December.

    More about this item

    Keywords

    Generalised autocovariance; Spectral models; Whittle likelihood; Reparameterisation.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.