IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v53y2017i2d10.1007_s00181-016-1145-x.html
   My bibliography  Save this article

Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market

Author

Listed:
  • Yuliya Lovcha

    (Universitat Rovira-i-Virgili and CREIP)

  • Alejandro Perez-Laborda

    (Universitat Rovira-i-Virgili and CREIP)

Abstract

A structural multivariate long memory model of the US gasoline market is employed to disentangle structural shocks and to estimate the own-price elasticity of gasoline demand. Our main empirical findings are: (1) there is strong evidence of nonstationarity and mean reversion in the real price of gasoline and in gasoline consumption; (2) accounting for the degree of persistence present in the data is essential to assess the responses of these two variables to structural shocks; (3) the contributions of the different supply and demand shocks to fluctuations in the gasoline market vary across frequency ranges; and (4) long memory makes available an interesting range of convergent possibilities for gasoline demand elasticities. Our estimates suggest that after a change in prices, consumers undertake a few measures to reduce consumption in the short- and medium-run but are reluctant to implement major changes in their consumption habits.

Suggested Citation

  • Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.
  • Handle: RePEc:spr:empeco:v:53:y:2017:i:2:d:10.1007_s00181-016-1145-x
    DOI: 10.1007/s00181-016-1145-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-016-1145-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-016-1145-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    3. Gil-Alana, Luis A., 2001. "A fractionally integrated model with a mean shift for the US and the UK real oil prices," Economic Modelling, Elsevier, vol. 18(4), pages 643-658, December.
    4. Kumar Narayan, Paresh & Smyth, Russell, 2007. "Are shocks to energy consumption permanent or temporary? Evidence from 182 countries," Energy Policy, Elsevier, vol. 35(1), pages 333-341, January.
    5. Christopher A. Sims, 1986. "Are forecasting models usable for policy analysis?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 10(Win), pages 2-16.
    6. John Coglianese & Lucas W. Davis & Lutz Kilian & James H. Stock, 2017. "Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 1-15, January.
    7. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    8. Apostolos Serletis, 2007. "Unit Root Behavior in Energy Futures Prices," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 1, pages 7-14, World Scientific Publishing Co. Pte. Ltd..
    9. Alan A. Carruth & Mark A. Hooker & Andrew J. Oswald, 1998. "Unemployment Equilibria And Input Prices: Theory And Evidence From The United States," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 621-628, November.
    10. Hosoya, Yuzo, 1996. "The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence," Journal of Econometrics, Elsevier, vol. 73(1), pages 217-236, July.
    11. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    12. Marc Gronwald, 2009. "Reconsidering the macroeconomics of the oil price in Germany: testing for causality in the frequency domain," Empirical Economics, Springer, vol. 36(2), pages 441-453, May.
    13. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    14. Lutz Kilian, 2010. "Explaining Fluctuations in Gasoline Prices: A Joint Model of the Global Crude Oil Market and the U.S. Retail Gasoline Market," The Energy Journal, , vol. 31(2), pages 87-112, April.
    15. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
    16. John Elder & Apostolos Serletis, 2008. "Long memory in energy futures prices," Review of Financial Economics, John Wiley & Sons, vol. 17(2), pages 146-155.
    17. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    18. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    19. Ghoshray, Atanu & Johnson, Ben, 2010. "Trends in world energy prices," Energy Economics, Elsevier, vol. 32(5), pages 1147-1156, September.
    20. Havranek, Tomas & Irsova, Zuzana & Janda, Karel, 2012. "Demand for gasoline is more price-inelastic than commonly thought," Energy Economics, Elsevier, vol. 34(1), pages 201-207.
    21. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    22. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    23. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    24. Mirko Abbritti & Luis A. Gil-Alana & Yuliya Lovcha & Antonio Moreno, 2016. "Term Structure Persistence," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 331-352.
    25. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2015. "The Hours Worked–Productivity Puzzle: Identification In A Fractional Integration Setting," Macroeconomic Dynamics, Cambridge University Press, vol. 19(7), pages 1593-1621, October.
    26. Braun, Phillip A. & Mittnik, Stefan, 1993. "Misspecifications in vector autoregressions and their effects on impulse responses and variance decompositions," Journal of Econometrics, Elsevier, vol. 59(3), pages 319-341, October.
    27. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    28. Rolf Tschernig & Enzo Weber & Roland Weigand, 2013. "Long-Run Identification in a Fractionally Integrated System," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 438-450, October.
    29. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    30. Erhard Reschenhofer & Benedikt M. Pötscher & Michael A. Hauser, 1999. "Measuring persistence in aggregate output: ARMA models, fractionally integrated ARMA models and nonparametric procedures," Empirical Economics, Springer, vol. 24(2), pages 243-269.
    31. Lean, Hooi Hooi & Smyth, Russell, 2009. "Long memory in US disaggregated petroleum consumption: Evidence from univariate and multivariate LM tests for fractional integration," Energy Policy, Elsevier, vol. 37(8), pages 3205-3211, August.
    32. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    33. Jeremy Berkowitz & Francis X. Diebold, 1998. "Bootstrapping Multivariate Spectra," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 664-666, November.
    34. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    35. Clive, W.J. & Lin, Jin-Lung, 1995. "Causality in the Long Run," Econometric Theory, Cambridge University Press, vol. 11(3), pages 530-536, June.
    36. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    37. Kyongwook Choi & Shawkat Hammoudeh, 2009. "Long Memory in Oil and Refined Products Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 97-116.
    38. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    39. Goliński, Adam & Zaffaroni, Paolo, 2016. "Long memory affine term structure models," Journal of Econometrics, Elsevier, vol. 191(1), pages 33-56.
    40. Hsu, Chih-Chiang, 2001. "Change point estimation in regressions with I(d) variables," Economics Letters, Elsevier, vol. 70(2), pages 147-155, February.
    41. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    42. Edelstein, Paul & Kilian, Lutz, 2009. "How sensitive are consumer expenditures to retail energy prices?," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 766-779, September.
    43. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(4), pages 736-749, August.
    44. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    45. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baumeister, Christiane & Hamilton, James, 2017. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Deman," CEPR Discussion Papers 12532, C.E.P.R. Discussion Papers.
    2. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    3. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.
    4. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2018. "Monetary policy shocks, inflation persistence, and long memory," Journal of Macroeconomics, Elsevier, vol. 55(C), pages 117-127.
    5. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    6. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    7. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015. "What Drives Oil Prices? Emerging Versus Developed Economies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
    8. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    9. Blaise Gnimassoun & Marc Joëts & Tovonony Razafindrabe, 2016. "On the link between current account and oil price fluctuations in diversified economies: The case of Canada," Working Papers hal-04141574, HAL.
    10. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    11. Lovcha, Yuliya & Pérez Laborda, Àlex, 2018. "Volatility Spillovers in a Long-Memory VAR: an Application to Energy Futures Returns," Working Papers 2072/307362, Universitat Rovira i Virgili, Department of Economics.
    12. Ederington, Louis H. & Fernando, Chitru S. & Lee, Thomas K. & Linn, Scott C. & Zhang, Huiming, 2021. "The relation between petroleum product prices and crude oil prices," Energy Economics, Elsevier, vol. 94(C).
    13. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    14. Laurence Levin & Matthew S. Lewis & Frank A. Wolak, 2017. "High Frequency Evidence on the Demand for Gasoline," American Economic Journal: Economic Policy, American Economic Association, vol. 9(3), pages 314-347, August.
    15. Mohammad Vesal & Amir Hossein Tavakoli & Mohammad H. Rahmati, 2022. "What do one hundred million transactions tell us about demand elasticity of gasoline?," Empirical Economics, Springer, vol. 62(6), pages 2693-2711, June.
    16. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
    17. Lutz Kilian & Xiaoqing Zhou, 2023. "The Econometrics of Oil Market VAR Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 65-95, Emerald Group Publishing Limited.
    18. Gnimassoun, Blaise & Joëts, Marc & Razafindrabe, Tovonony, 2017. "On the link between current account and oil price fluctuations in diversified economies: The case of Canada," International Economics, Elsevier, vol. 152(C), pages 63-78.
    19. Huntington, Hillard G., 2024. "US gasoline response to vehicle fuel efficiency: A contribution to the direct rebound effect," Energy Economics, Elsevier, vol. 136(C).
    20. ElFayoumi, Khalid, 2018. "The balance sheet effects of oil market shocks: An industry level analysis," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 112-127.

    More about this item

    Keywords

    Fractional integration; Persistence; Structural VAR; Variance-frequency decomposition;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:53:y:2017:i:2:d:10.1007_s00181-016-1145-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.