IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v59y1997i1p255-268.html
   My bibliography  Save this article

Semiparametric Bayesian Inference for Time Series with Mixed Spectra

Author

Listed:
  • C. K. Carter
  • R. Kohn

Abstract

A Bayesian analysis is presented of a time series which is the sum of a stationary component with a smooth spectral density and a deterministic component consisting of a linear combination of a trend and periodic terms. The periodic terms may have known or unknown frequencies. The advantage of our approach is that different features of the data—such as the regression parameters, the spectral density, unknown frequencies and missing observations—are combined in a hierarchical Bayesian framework and estimated simultaneously. A Bayesian test to detect deterministic components in the data is also constructed. By using an asymptotic approximation to the likelihood, the computation is carried out efficiently using the Markov chain Monte Carlo method in O(Mn) operations, where nis the sample size and Mis the number of iterations. We show empirically that our approach works well on real and simulated samples.

Suggested Citation

  • C. K. Carter & R. Kohn, 1997. "Semiparametric Bayesian Inference for Time Series with Mixed Spectra," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 255-268.
  • Handle: RePEc:bla:jorssb:v:59:y:1997:i:1:p:255-268
    DOI: 10.1111/1467-9868.00067
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00067
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricio Maturana-Russel & Renate Meyer, 2021. "Bayesian spectral density estimation using P-splines with quantile-based knot placement," Computational Statistics, Springer, vol. 36(3), pages 2055-2077, September.
    2. Christian Macaro & Raquel Prado, 2014. "Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 105-129, January.
    3. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    4. Cadonna, Annalisa & Kottas, Athanasios & Prado, Raquel, 2017. "Bayesian mixture modeling for spectral density estimation," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 189-195.
    5. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    6. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
    7. Ulrich K. Müller & James H. Stock, 2011. "Forecasts in a Slightly Misspecified Finite Order VAR Model," Working Papers 2011-4, Princeton University. Economics Department..
    8. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    9. Ravazzolo Francesco & Vahey Shaun P., 2014. "Forecast densities for economic aggregates from disaggregate ensembles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 367-381, September.
    10. Roberto Iannaccone & Edoardo Otranto, 2003. "Signal Extraction in Continuous Time and the Generalized Hodrick- Prescott Filter," Econometrics 0311002, University Library of Munich, Germany.
    11. Tanujit Dey & Kun Ho Kim & Chae Young Lim, 2018. "Bayesian time series regression with nonparametric modeling of autocorrelation," Computational Statistics, Springer, vol. 33(4), pages 1715-1731, December.
    12. Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CREATES Research Papers 2013-34, Department of Economics and Business Economics, Aarhus University.
    13. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    14. Neil Shephard & Michael K Pitt, 1995. "Likelihood analysis of non-Gaussian parameter driven models," Economics Papers 15 & 108., Economics Group, Nuffield College, University of Oxford.
    15. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    16. Fruhwirth-Schnatter, Sylvia & Fruhwirth, Rudolf, 2007. "Auxiliary mixture sampling with applications to logistic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3509-3528, April.
    17. E. J. G Odolphin & S. E. Johnson, 2003. "Decomposition of Time Series Dynamic Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(5), pages 513-527, September.
    18. Ori Rosen & Sally Wood & David S. Stoffer, 2012. "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1575-1589, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:59:y:1997:i:1:p:255-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.