IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/168.html
   My bibliography  Save this paper

Estimation of ordered response models with sample selection

Author

Abstract

We introduce two new Stata commands for the estimation of an ordered response model with sample selection. The opsel command uses a standard maximum likelihood (ML) approach to fit a parametric specification of the model where errors are assumed to follow a bivariate Gaussian distribution. The snpopsel command uses the semi-nonparametric (SNP) approach of Gallant and Nychka (1987) to fit a semiparametric specification of the model where the bivariate density function of the errors is approximated by a Hermite polynomial expansion. The snpopsel command extends the set of Stata routines for SNP estimation of discrete response models. Compared to the other SNP estimators, our routine is relatively faster because it is programmed in MATA. In addition, we provide new post-estimation routines to compute linear predictions, predicted probabilities and marginal effects. These improvements are also extended to the set of SNP Stata commands originally written by Stewart (2004) and De Luca (2008). An illustration of the new opsel and snpopsel commands is provided through an empirical application on self-reported health with selectivity due to sample attrition.

Suggested Citation

  • Giuseppe De Luca & Valeria Perotti, 2010. "Estimation of ordered response models with sample selection," CEIS Research Paper 168, Tor Vergata University, CEIS, revised 03 Jun 2010.
  • Handle: RePEc:rtv:ceisrp:168
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP168.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Songnian & Khan, Shakeeb, 2003. "Semiparametric Estimation Of A Heteroskedastic Sample Selection Model," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1040-1064, December.
    2. Cheti Nicoletti & Franco Peracchi, 2005. "Survey response and survey characteristics: microlevel evidence from the European Community Household Panel," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(4), pages 763-781, November.
    3. Coppejans, Mark, 2007. "On efficient estimation of the ordered response model," Journal of Econometrics, Elsevier, vol. 137(2), pages 577-614, April.
    4. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
    5. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    6. Paul Contoyannis & Andrew M. Jones & Nigel Rice, 2004. "The dynamics of health in the British Household Panel Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 473-503.
    7. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LP, vol. 8(2), pages 190-220, June.
    8. Agar Brugiavini & Tullio Jappelli & Guglielmo Weber, 2002. "The Survey on Health, Aging and Wealth," CSEF Working Papers 86, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    9. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    10. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "GLLAMM Manual," U.C. Berkeley Division of Biostatistics Working Paper Series 1160, Berkeley Electronic Press.
    11. Roger W. Klein & Robert P. Sherman, 2002. "Shift Restrictions and Semiparametric Estimation in Ordered Response Models," Econometrica, Econometric Society, vol. 70(2), pages 663-691, March.
    12. Alfonso Miranda & Sophia Rabe-Hesketh, 2006. "Maximum likelihood estimation of endogenous switching and sample selection models for binary, ordinal, and count variables," Stata Journal, StataCorp LP, vol. 6(3), pages 285-308, September.
    13. Giuseppe De Luca & Franco Peracchi, 2012. "Estimating Engel curves under unit and item nonresponse," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1076-1099, November.
    14. Meng, Chun-Lo & Schmidt, Peter, 1985. "On the Cost of Partial Observability in the Bivariate Probit Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(1), pages 71-85, February.
    15. Mark B. Stewart, 2004. "Semi-nonparametric estimation of extended ordered probit models," Stata Journal, StataCorp LP, vol. 4(1), pages 27-39, March.
    16. Stewart, Mark B., 2005. "A comparison of semiparametric estimators for the ordered response model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 555-573, April.
    17. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    18. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    19. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    20. Coppejans, Mark & Gallant, A. Ronald, 2002. "Cross-validated SNP density estimates," Journal of Econometrics, Elsevier, vol. 110(1), pages 27-65, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe De Luca & Franco Peracchi, 2012. "Estimating Engel curves under unit and item nonresponse," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1076-1099, November.
    2. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    3. Omar Paccagnella, 2011. "Anchoring vignettes with sample selection due to non‐response," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(3), pages 665-687, July.
    4. Giuseppe De Luca & Franco Peracchi, 2007. "A sample selection model for unit and item nonresponse in cross-sectional surveys," CEIS Research Paper 95, Tor Vergata University, CEIS.
    5. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LP, vol. 8(2), pages 190-220, June.
    6. Doremus, Jacqueline, 2020. "How does eco-label competition affect environmental benefits? The case of Central Africa's forests," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    7. Yixiao Jiang, 2021. "Semiparametric Estimation of a Corporate Bond Rating Model," Econometrics, MDPI, vol. 9(2), pages 1-20, May.
    8. Lechner, Michael & Okasa, Gabriel, 2019. "Random Forest Estimation of the Ordered Choice Model," Economics Working Paper Series 1908, University of St. Gallen, School of Economics and Political Science.
    9. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    10. Stefan Boes, 2013. "Nonparametric analysis of treatment effects in ordered response models," Empirical Economics, Springer, vol. 44(1), pages 81-109, February.
    11. Mamine, Fateh & Fares, M'hand & Minviel, Jean Joseph, 2020. "Contract Design for Adoption of Agrienvironmental Practices: A Meta-analysis of Discrete Choice Experiments," Ecological Economics, Elsevier, vol. 176(C).
    12. Glenn W. Harrison & Morten I. Lau & Hong Il Yoo, 2020. "Risk Attitudes, Sample Selection, and Attrition in a Longitudinal Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 552-568, July.
    13. Sharma, Anurag & Siciliani, Luigi & Harris, Anthony, 2013. "Waiting times and socioeconomic status: Does sample selection matter?," Economic Modelling, Elsevier, vol. 33(C), pages 659-667.
    14. Tatiana Komarova & William Matcham, 2022. "Multivariate ordered discrete response models," Papers 2205.05779, arXiv.org, revised Mar 2023.
    15. Maarten Goos & Anna Salomons, 2017. "Measuring teaching quality in higher education: assessing selection bias in course evaluations," Research in Higher Education, Springer;Association for Institutional Research, vol. 58(4), pages 341-364, June.
    16. Andrew M. Jones & Xander Koolman & Nigel Rice, 2006. "Health‐related non‐response in the British Household Panel Survey and European Community Household Panel: using inverse‐probability‐weighted estimators in non‐linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 543-569, July.
    17. Takahiro ITO, 2024. "Binary and Ordered Response Models in Randomized Experiments: Applications of the Resampling-Based Maximum Likelihood Method," GSICS Working Paper Series 42, Graduate School of International Cooperation Studies, Kobe University.
    18. Avinno Faruk, 2021. "Analysing the glass ceiling and sticky floor effects in Bangladesh: evidence, extent and elements," SN Business & Economics, Springer, vol. 1(9), pages 1-23, September.
    19. De los Santos, Babur, 2018. "Consumer search on the Internet," International Journal of Industrial Organization, Elsevier, vol. 58(C), pages 66-105.
    20. Arthur Lewbel, 2012. "An Overview of the Special Regressor Method," Boston College Working Papers in Economics 810, Boston College Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.