IDEAS home Printed from https://ideas.repec.org/p/rtr/wpaper/0240.html
   My bibliography  Save this paper

Pc Complex: Pc Algorithm For Complex Survey Data

Author

Listed:
  • Daniela Marella

Abstract

PC algorithm is one of the most known procedures for Bayesian networks structural learning. The structure is inferred carrying out several independence tests on a database and building a Bayesian network in agreement with the tests results. The PC algorithm is based on the assumption of independent and identically distributed observations. In practice, sample selection in surveys involves more complex sampling designs, then the standard test procedure is not valid even asymptotically. In order to avoid misleading results about the true causal structure the sample selection process must be taken into account in the structural learning process. In this paper, a modi ed version of the PC algorithm is proposed for inferring casual structure from complex survey data. It is based on resampling techniques for nite population. A simulation experiment showing the robustness with respect to departures from the assumptions and the good performance of the proposed algorithm is carried out.

Suggested Citation

  • Daniela Marella, 2018. "Pc Complex: Pc Algorithm For Complex Survey Data," Departmental Working Papers of Economics - University 'Roma Tre' 0240, Department of Economics - University Roma Tre.
  • Handle: RePEc:rtr:wpaper:0240
    as

    Download full text from publisher

    File URL: http://dipeco.uniroma3.it/db/docs/WP%20240.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Di Zio & Mauro Scanu & Lucia Coppola & Orietta Luzi & Alessandra Ponti, 2004. "Bayesian networks for imputation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 309-322, May.
    2. Pier Luigi Conti & Daniela Marella, 2015. "Inference for Quantiles of a Finite Population: Asymptotic versus Resampling Results," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 545-561, June.
    3. Kalisch, Markus & Mächler, Martin & Colombo, Diego & Maathuis, Marloes H. & Bühlmann, Peter, 2012. "Causal Inference Using Graphical Models with the R Package pcalg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i11).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Marella & Paola Vicard, 2022. "Bayesian network structural learning from complex survey data: a resampling based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 981-1013, October.
    2. Rosa Aghdam & Mojtaba Ganjali & Parisa Niloofar & Changiz Eslahchi, 2016. "Inferring gene regulatory networks by an order independent algorithm using incomplete data sets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 893-913, April.
    3. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    4. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
    5. Bouncken, Ricarda B. & Ratzmann, Martin & Kraus, Sascha, 2021. "Anti-aging: How innovation is shaped by firm age and mutual knowledge creation in an alliance," Journal of Business Research, Elsevier, vol. 137(C), pages 422-429.
    6. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    7. Leonard Henckel & Emilija Perković & Marloes H. Maathuis, 2022. "Graphical criteria for efficient total effect estimation via adjustment in causal linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 579-599, April.
    8. Peter Bühlmann, 2013. "Causal statistical inference in high dimensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 357-370, June.
    9. Aviral Kumar Tiwari & Micheal Kofi Boachie & Rangan Gupta, 2021. "Network Analysis of Economic and Financial Uncertainties in Advanced Economies: Evidence from Graph-Theory," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(1), pages 188-215, March.
    10. Vincenzina Vitale & Flaminia Musella & Paola Vicard & Valentina Guizzi, 2020. "Modelling an energy market with Bayesian networks for non-normal data," Computational Management Science, Springer, vol. 17(1), pages 47-64, January.
    11. Jenny Häggström, 2018. "Rejoinder to Discussions on: Data†driven confounder selection via Markov and Bayesian networks," Biometrics, The International Biometric Society, vol. 74(2), pages 407-410, June.
    12. Rigana, Katerina & Wit, Ernst-Jan Camiel & Cook, Samantha, 2023. "A new way of measuring effects of financial crisis on contagion in currency markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
    13. Jinyang Zheng & Zhengling Qi & Yifan Dou & Yong Tan, 2019. "How Mega Is the Mega? Exploring the Spillover Effects of WeChat Using Graphical Model," Information Systems Research, INFORMS, vol. 30(4), pages 1343-1362, December.
    14. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    15. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.
    16. Flaminia Musella & Paola Vicard & Maria Chiara De Angelis, 2022. "A Bayesian Network Model for Supporting School Managers Decisions in the Pandemic Era," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(3), pages 1445-1465, October.
    17. Coutinho Wieger & Waal Ton de & Shlomo Natalie, 2013. "Calibrated Hot-Deck Donor Imputation Subject to Edit Restrictions," Journal of Official Statistics, Sciendo, vol. 29(2), pages 299-321, September.
    18. Ronja Foraita & Juliane Friemel & Kathrin Günther & Thomas Behrens & Jörn Bullerdiek & Rolf Nimzyk & Wolfgang Ahrens & Vanessa Didelez, 2020. "Causal discovery of gene regulation with incomplete data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1747-1775, October.
    19. Michimasa Fujiogi & Yoshihiko Raita & Marcos Pérez-Losada & Robert J. Freishtat & Juan C. Celedón & Jonathan M. Mansbach & Pedro A. Piedra & Zhaozhong Zhu & Carlos A. Camargo & Kohei Hasegawa, 2022. "Integrated relationship of nasopharyngeal airway host response and microbiome associates with bronchiolitis severity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. C. Wittenbecher & R. Cuadrat & L. Johnston & F. Eichelmann & S. Jäger & O. Kuxhaus & M. Prada & F. Del Greco M. & A. A. Hicks & P. Hoffman & J. Krumsiek & F. B. Hu & M. B. Schulze, 2022. "Dihydroceramide- and ceramide-profiling provides insights into human cardiometabolic disease etiology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Keywords

    Bayesian network; complex survey data; pseudo-population; structural learning.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtr:wpaper:0240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Telephone for information (email available below). General contact details of provider: https://edirc.repec.org/data/dero3it.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.