IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p407-410.html
   My bibliography  Save this article

Rejoinder to Discussions on: Data†driven confounder selection via Markov and Bayesian networks

Author

Listed:
  • Jenny Häggström

Abstract

No abstract is available for this item.

Suggested Citation

  • Jenny Häggström, 2018. "Rejoinder to Discussions on: Data†driven confounder selection via Markov and Bayesian networks," Biometrics, The International Biometric Society, vol. 74(2), pages 407-410, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:407-410
    DOI: 10.1111/biom.12783
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12783
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kalisch, Markus & Mächler, Martin & Colombo, Diego & Maathuis, Marloes H. & Bühlmann, Peter, 2012. "Causal Inference Using Graphical Models with the R Package pcalg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i11).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
    3. Aviral Kumar Tiwari & Micheal Kofi Boachie & Rangan Gupta, 2021. "Network Analysis of Economic and Financial Uncertainties in Advanced Economies: Evidence from Graph-Theory," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(1), pages 188-215, March.
    4. Bouncken, Ricarda B. & Ratzmann, Martin & Kraus, Sascha, 2021. "Anti-aging: How innovation is shaped by firm age and mutual knowledge creation in an alliance," Journal of Business Research, Elsevier, vol. 137(C), pages 422-429.
    5. Leonard Henckel & Emilija Perković & Marloes H. Maathuis, 2022. "Graphical criteria for efficient total effect estimation via adjustment in causal linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 579-599, April.
    6. Peter Bühlmann, 2013. "Causal statistical inference in high dimensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 357-370, June.
    7. Aviral Kumar Tiwari & Micheal Kofi Boachie & Rangan Gupta, 2021. "Network Analysis of Economic and Financial Uncertainties in Advanced Economies: Evidence from Graph-Theory," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(1), pages 188-215, March.
    8. Vincenzina Vitale & Flaminia Musella & Paola Vicard & Valentina Guizzi, 2020. "Modelling an energy market with Bayesian networks for non-normal data," Computational Management Science, Springer, vol. 17(1), pages 47-64, January.
    9. Rigana, Katerina & Wit, Ernst-Jan Camiel & Cook, Samantha, 2023. "A new way of measuring effects of financial crisis on contagion in currency markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Jinyang Zheng & Zhengling Qi & Yifan Dou & Yong Tan, 2019. "How Mega Is the Mega? Exploring the Spillover Effects of WeChat Using Graphical Model," Information Systems Research, INFORMS, vol. 30(4), pages 1343-1362, December.
    11. Daniela Scidá, 2023. "Structural VAR and financial networks: A minimum distance approach to spatial modeling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 49-68, January.
    12. Flaminia Musella & Paola Vicard & Maria Chiara De Angelis, 2022. "A Bayesian Network Model for Supporting School Managers Decisions in the Pandemic Era," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(3), pages 1445-1465, October.
    13. Daniela Marella, 2018. "Pc Complex: Pc Algorithm For Complex Survey Data," Departmental Working Papers of Economics - University 'Roma Tre' 0240, Department of Economics - University Roma Tre.
    14. Ronja Foraita & Juliane Friemel & Kathrin Günther & Thomas Behrens & Jörn Bullerdiek & Rolf Nimzyk & Wolfgang Ahrens & Vanessa Didelez, 2020. "Causal discovery of gene regulation with incomplete data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1747-1775, October.
    15. Michimasa Fujiogi & Yoshihiko Raita & Marcos Pérez-Losada & Robert J. Freishtat & Juan C. Celedón & Jonathan M. Mansbach & Pedro A. Piedra & Zhaozhong Zhu & Carlos A. Camargo & Kohei Hasegawa, 2022. "Integrated relationship of nasopharyngeal airway host response and microbiome associates with bronchiolitis severity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. C. Wittenbecher & R. Cuadrat & L. Johnston & F. Eichelmann & S. Jäger & O. Kuxhaus & M. Prada & F. Del Greco M. & A. A. Hicks & P. Hoffman & J. Krumsiek & F. B. Hu & M. B. Schulze, 2022. "Dihydroceramide- and ceramide-profiling provides insights into human cardiometabolic disease etiology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    18. C Schultheiss & P Bühlmann, 2023. "Ancestor regression in linear structural equation models," Biometrika, Biometrika Trust, vol. 110(4), pages 1117-1124.
    19. Aramayis Dallakyan, 2021. "Nonparanormal Structural VAR for Non-Gaussian Data," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1093-1113, April.
    20. Daniela Marella & Paola Vicard, 2022. "Bayesian network structural learning from complex survey data: a resampling based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 981-1013, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:407-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.