IDEAS home Printed from https://ideas.repec.org/p/rio/texdis/469.html
   My bibliography  Save this paper

Three-structured smooth transition regression models based on CART algorithm

Author

Listed:
  • Joel Corrêa da Rosa

    (Department of Statistics, Federal University of Paraná)

  • Álvaro Veiga

    (Department of Electrical Engineering, PUC-Rio)

  • Marcelo C. Medeiros

    (Department of Economics PUC-Rio)

Abstract

In the present work, a tree-based model that combines aspects of CART (Classification and Regression Trees) and STR (Smooth Transition Regression) is proposed. The main idea relies on specifying a parametric nonlinear model through a tree-growing procedure. The resulting model can be analysed either as a fuzzy regression or as a smooth transition regression with multiple regimes. Decisions about splits are entirely based on statistical tests of hypotheses and confidence intervals are constructed for the parameters within the terminal nodes as well as the final predictions. A Monte Carlo Experiment shows the estimators’ properties and the ability of the proposed algorithm to identify correctly several tree architectures. An application to the famous Boston Housing dataset shows that the proposed model provides better explanation with the same number of leaves as the one obtained with the CART algorithm.

Suggested Citation

  • Joel Corrêa da Rosa & Álvaro Veiga & Marcelo C. Medeiros, 2003. "Three-structured smooth transition regression models based on CART algorithm," Textos para discussão 469, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:469
    as

    Download full text from publisher

    File URL: http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td469.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    2. Potscher, Benedikt M. & Prucha, Ingmar R., 1986. "A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations," Journal of Econometrics, Elsevier, vol. 32(2), pages 219-251, July.
    3. Cooper, Suzanne J, 1998. "Multiple Regimes in U.S. Output Fluctuations," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 92-100, January.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Amemiya, Takeshi, 1983. "Non-linear regression models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 6, pages 333-389, Elsevier.
    6. Ciampi, Antonio, 1991. "Generalized regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 57-78, August.
    7. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    8. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    9. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Rosa, Joel Correa & Veiga, Alvaro & Medeiros, Marcelo C., 2008. "Tree-structured smooth transition regression models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2469-2488, January.
    2. Philip Rothman & Dick van Dijk & Philip Hans Franses, 1999. "A Multivariate STAR Analysis of the Relationship Between Money and Output," Working Papers 9913, East Carolina University, Department of Economics.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    5. Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
    6. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    7. José Luis Aznarte & Marcelo Cunha Medeiros & José Manuel Benítez Sánchez, 2010. "Linearity Testing Against a Fuzzy Rule-based Model," Textos para discussão 566, Department of Economics PUC-Rio (Brazil).
    8. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    9. Packalen, Mikko & Wirjanto, Tony S., 2012. "Inference about clustering and parametric assumptions in covariance matrix estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 1-14, January.
    10. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    11. Jawadi Fredj & Koubaa Yousra, 2004. "Threshold Cointegration between Stock Returns : An application of STECM Models," Econometrics 0412001, University Library of Munich, Germany.
    12. Dastoor, Naorayex K., 1997. "Testing for conditional heteroskedasticity with misspecified alternative hypotheses," Journal of Econometrics, Elsevier, vol. 82(1), pages 63-80.
    13. Marcelo Fernandes & Marco Aurélio Dos Santos Rocha, 0. "Are price limits on futures markets that cool? Evidence from the Brazilian Mercantile and Futures Exchange," Journal of Financial Econometrics, Oxford University Press, vol. 5(2), pages 219-242.
    14. Omay, Tolga & Takay Araz, Bahar & Ilalan, Deniz, 2011. "The effects of terrorist activities on foreign direct investment: nonlinear Evidence," MPRA Paper 31015, University Library of Munich, Germany.
    15. Omay, Tolga & Iren, Perihan, 2019. "Behavior of foreign investors in the Malaysian stock market in times of crisis: A nonlinear approach," Journal of Asian Economics, Elsevier, vol. 60(C), pages 85-100.
    16. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    17. Nour Meddahi & Eric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
    18. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    19. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    20. Yi-Ting Chen & Zhongjun Qu, 2015. "M Tests with a New Normalization Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dpucrbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.