Linearity Testing Against a Fuzzy Rule-based Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004.
"Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
- Mayte Suarez Farinãs & Carlos Eduardo Pedreira & Marcelo C. Medeiros, 2003. "Local-global neural networks: a new approach for nonlinear time series modelling," Textos para discussão 470, Department of Economics PUC-Rio (Brazil).
- Potscher, Benedikt M. & Prucha, Ingmar R., 1986. "A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations," Journal of Econometrics, Elsevier, vol. 32(2), pages 219-251, July.
- Shane M. Greenstein (ed.), 2006. "Computing," Books, Edward Elgar Publishing, number 3171.
- Medeiros, Marcelo & Veiga, Alvaro, 2000. "A Flexible Coefficient Smooth Transition Time Series Model," SSE/EFI Working Paper Series in Economics and Finance 360, Stockholm School of Economics, revised 29 Apr 2004.
- White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
- Wooldridge, Jeffrey M., 1986. "Estimation and inference for dependent processes," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 45, pages 2639-2738, Elsevier.
- Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006.
"Building neural network models for time series: a statistical approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
- Medeiros, Marcelo C. & Teräsvirta, Timo & Rech, Gianluigi, 2002. "Building neural network models for time series: A statistical approach," SSE/EFI Working Paper Series in Economics and Finance 508, Stockholm School of Economics.
- Marcelo C. Medeiros & Timo Terasvirta & Gianluigi Rech, 2002. "Building Neural Network Models for Time Series: A Statistical Approach," Textos para discussão 461, Department of Economics PUC-Rio (Brazil).
- R. F. Engle & D. McFadden (ed.), 1986. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 4, number 4, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004.
"Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
- Mayte Suarez Farinãs & Carlos Eduardo Pedreira & Marcelo C. Medeiros, 2003. "Local-global neural networks: a new approach for nonlinear time series modelling," Textos para discussão 470, Department of Economics PUC-Rio (Brazil).
- Joel Corrêa da Rosa & Álvaro Veiga & Marcelo C. Medeiros, 2003. "Three-structured smooth transition regression models based on CART algorithm," Textos para discussão 469, Department of Economics PUC-Rio (Brazil).
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Lima Luiz Renato & Xiao Zhijie, 2010.
"Testing Unit Root Based on Partially Adaptive Estimation,"
Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-34, June.
- Luiz Renato Lima & Zhijie Xiao, 2004. "Testing Unit Root Based on Partially Adaptive Estimation," Econometric Society 2004 Latin American Meetings 63, Econometric Society.
- Xiao, Zhijie & Lima, Luiz Renato, 2004. "Testing unit root based on partially adaptive estimation," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 528, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Xiao, Zhijie, 2004.
"Estimating average economic growth in time series data with persistency,"
Journal of Macroeconomics, Elsevier, vol. 26(4), pages 699-724, December.
- Xiao, Qifang & Xiao, Zhijie, 2003. "Estimating Average Economic Growth in Time Series Data with Persistency," Working Papers 03-0111, University of Illinois at Urbana-Champaign, College of Business.
- Areosa, Waldyr Dutra & McAleer, Michael & Medeiros, Marcelo C., 2011.
"Moment-based estimation of smooth transition regression models with endogenous variables,"
Journal of Econometrics, Elsevier, vol. 165(1), pages 100-111.
- Areosa, W.D. & McAleer, M.J. & Medeiros, M.C., 2008. "Moment-bases estimation of smooth transition regression models with endogenous variables," Econometric Institute Research Papers EI 2008-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Waldyr Dutra Areosa & Michael McAleer & Marcelo Cunha Medeiros, 2010. "Moment-based estimation of smooth transition regression models with endogenous variables," Textos para discussão 571, Department of Economics PUC-Rio (Brazil).
- Waldyr Dutra Areosa & Michael McAleer & Marcelo C. Medeiros, 2009. "Moment-Based Estimation of Smooth Transition Regression Models with Endogenous Variables," CIRJE F-Series CIRJE-F-671, CIRJE, Faculty of Economics, University of Tokyo.
- Medeiros, Marcelo C. & McAleer, Michael & Slottje, Daniel & Ramos, Vicente & Rey-Maquieira, Javier, 2008. "An alternative approach to estimating demand: Neural network regression with conditional volatility for high frequency air passenger arrivals," Journal of Econometrics, Elsevier, vol. 147(2), pages 372-383, December.
- da Rosa, Joel Correa & Veiga, Alvaro & Medeiros, Marcelo C., 2008. "Tree-structured smooth transition regression models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2469-2488, January.
- Eduardo Mendes & Alvaro Veiga & MArcelo Cunha Medeiros, 2007. "Estimation And Asymptotic Theory For A New Class Of Mixture Models," Textos para discussão 538, Department of Economics PUC-Rio (Brazil).
- Ioannis Kasparis, 2008. "Functional Form Misspecification in Regressions with a Unit Root," University of Cyprus Working Papers in Economics 2-2008, University of Cyprus Department of Economics.
- Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002.
"Smooth Transition Autoregressive Models — A Survey Of Recent Developments,"
Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
- van Dijk, Dick & Teräsvirta, Timo & Franses, Philip Hans, 2000. "Smooth Transition Autoregressive Models - A Survey of Recent Developments," SSE/EFI Working Paper Series in Economics and Finance 380, Stockholm School of Economics, revised 17 Jan 2001.
- van Dijk, D.J.C. & Terasvirta, T. & Franses, Ph.H.B.F., 2000. "Smooth transition autoregressive models - A survey of recent developments," Econometric Institute Research Papers EI 2000-23/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- McAleer, Michael & Medeiros, Marcelo C. & Slottje, Daniel, 2008. "A neural network demand system with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 147(2), pages 359-371, December.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Nadiezhda de la Uz, 2002. "La hipótesis de martingala en el mercado bursátil mexicano," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 17(1), pages 91-127.
- Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Nevo, Aviv, 2001.
"Measuring Market Power in the Ready-to-Eat Cereal Industry,"
Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
- Nevo, Aviv, 1998. "Measuring Market Power in the Ready-To-Eat Cereal Industry," Research Reports 25164, University of Connecticut, Food Marketing Policy Center.
- Nevo, Aviv, 1999. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Competition Policy Center, Working Paper Series qt7cm5p858, Competition Policy Center, Institute for Business and Economic Research, UC Berkeley.
- Aviv Nevo, 2003. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Microeconomics 0303006, University Library of Munich, Germany.
- Aviv Nevo, 1998. "Measuring Market Power in the Ready-to-Eat Cereal Industry," NBER Working Papers 6387, National Bureau of Economic Research, Inc.
- Nevo, Aviv, 1998. "Measuring Market Power in the Ready-To-Eat Cereal Industry," Food Marketing Policy Center Research Reports 037, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
- Liebscher, Eckhard, 2003. "Strong convergence of estimators in nonlinear autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 247-261, February.
- Thomaidis, Nikolaos S. & Biskas, Pandelis N., 2021. "Fundamental pricing laws and long memory effects in the day-ahead power market," Energy Economics, Elsevier, vol. 100(C).
More about this item
Keywords
fuzzy rule-based models; time series; linearity test; statistical inference;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2010-04-17 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:566. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dpucrbr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.