IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i1p1-14.html
   My bibliography  Save this article

Inference about clustering and parametric assumptions in covariance matrix estimation

Author

Listed:
  • Packalen, Mikko
  • Wirjanto, Tony S.

Abstract

Selecting an estimator for the covariance matrix of a regression's parameter estimates is an important step in hypothesis testing. From less to more robust estimators, the choices available to researchers include Eicker/White heteroskedasticity-robust estimator, cluster-robust estimator, and multi-way cluster-robust estimator. The rationale for choosing a less robust covariance matrix estimator is that tests conducted using this estimator can have better power properties. This motivates tests that examine the appropriate level of robustness in covariance matrix estimation. In this paper, we propose a new robustness testing strategy, and show that it can dramatically improve inference about the proper level of robustness in covariance matrix estimation. In an empirically relevant example, namely the placebo treatment application of Bertrand, Duflo and Mullainathan (2004), the power of the proposed robustness testing strategy against the null hypothesis "no clustering" is 0.82 while the power of the existing robustness testing approach against the same null is only 0.04. We also show why the existing clustering test and other applications of the White (1980) robustness testing approach often perform poorly, which to our knowledge has not been well understood. The insight into why this existing testing approach performs poorly is also the basis for the proposed robustness testing strategy.

Suggested Citation

  • Packalen, Mikko & Wirjanto, Tony S., 2012. "Inference about clustering and parametric assumptions in covariance matrix estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 1-14, January.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:1-14
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002519
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gabor Kezdi, 2005. "Robus Standard Error Estimation in Fixed-Effects Panel Models," Econometrics 0508018, University Library of Munich, Germany.
    2. James H. Stock & Mark W. Watson, 2008. "Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression," Econometrica, Econometric Society, vol. 76(1), pages 155-174, January.
    3. Krueger, Alan B. & Mueller, Andreas, 2010. "Job search and unemployment insurance: New evidence from time use data," Journal of Public Economics, Elsevier, vol. 94(3-4), pages 298-307, April.
    4. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    5. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    6. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    7. Baltagi, Badi H. & Jung, Byoung Cheol & Song, Seuck Heun, 2010. "Testing for heteroskedasticity and serial correlation in a random effects panel data model," Journal of Econometrics, Elsevier, vol. 154(2), pages 122-124, February.
    8. Mueller, Andreas, 2010. "On-the-job search and wage dispersion: New evidence from time use data," Economics Letters, Elsevier, vol. 109(2), pages 124-127, November.
    9. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    10. Montes-Rojas, Gabriel & Sosa-Escudero, Walter, 2011. "Robust tests for heteroskedasticity in the one-way error components model," Journal of Econometrics, Elsevier, vol. 160(2), pages 300-310, February.
    11. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    12. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    13. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    14. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    15. repec:hal:journl:peer-00768191 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    2. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    3. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    4. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    5. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    6. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    7. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    8. Christian A. Vossler, 2013. "Analyzing repeated-game economics experiments: robust standard errors for panel data with serial correlation," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 3, pages 89-112, Edward Elgar Publishing.
    9. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    10. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    11. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.
    12. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    13. Aleksey Oshchepkov & Anna Shirokanova, 2020. "Multilevel Modeling For Economists: Why, When And How," HSE Working papers WP BRP 233/EC/2020, National Research University Higher School of Economics.
    14. Han, Chirok & Phillips, Peter C. B. & Sul, Donggyu, 2014. "X-Differencing And Dynamic Panel Model Estimation," Econometric Theory, Cambridge University Press, vol. 30(1), pages 201-251, February.
    15. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    16. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    17. Jonah B. Gelbach & Doug Miller, 2009. "Robust Inference with Multi-way Clustering," Working Papers 226, University of California, Davis, Department of Economics.
    18. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    19. Annalivia Polselli, 2023. "Robust Inference in Panel Data Models: Some Effects of Heteroskedasticity and Leveraged Data in Small Samples," Papers 2312.17676, arXiv.org.
    20. Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2017. "Validity Of Wild Bootstrap Inference With Clustered Errors," Working Paper 1383, Economics Department, Queen's University.

    More about this item

    Keywords

    Covariance matrix estimator Cluster-robust Heteroskedasticity-robust Power Size; finite samples;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.