IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v40y2017i6p590-615.html
   My bibliography  Save this article

Contextual Density and US Automotive CO2 Emissions across the Rural–Urban Continuum

Author

Listed:
  • Andrew Perumal
  • David Timmons

Abstract

Using data from the 2009 National Household Travel Survey, we quantify the effects of settlement patterns on individual driving habits and the resulting automotive carbon dioxide (CO 2 ) emissions. We employ CO 2 emissions to capture this impact accurately, as it reflects both vehicle miles traveled and any spatial differences in vehicle fuel efficiency choices. While previous studies have compared automotive travel in urban and suburban areas, our approach characterizes emissions across the entire US rural–urban gradient, focusing on the effects of population density. Rather than using categorical measures of contextual density (city, suburb, town, etc.), we use a geographical information system to calculate continuous measures of contextual density, that is, density at different proximities to households. These measures of contextual density allow us to model travel effects induced by the gravitational pull of the population densities of urban cores. Further, our methodological approach frames location choice as an endogenous treatment effect; that is, residential locations are not randomly assigned across our sample and significantly alter driving behavior. We find that individuals living in urban cores generate the lowest per capita automotive CO 2 emissions, due to close proximities of population concentrations. Rather than attracting individuals who would likely have low CO 2 emissions anyway, urban location apparently mitigates the emissions of people who would otherwise tend to have high automotive CO 2 emissions. We find larger elasticities with respect to density than previous studies and also find that the attractive forces of population densities affect driving patterns at distances up to sixty-one kilometers outside of urban areas.

Suggested Citation

  • Andrew Perumal & David Timmons, 2017. "Contextual Density and US Automotive CO2 Emissions across the Rural–Urban Continuum," International Regional Science Review, , vol. 40(6), pages 590-615, November.
  • Handle: RePEc:sae:inrsre:v:40:y:2017:i:6:p:590-615
    DOI: 10.1177/0160017615614897
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0160017615614897
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0160017615614897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    5. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    6. Kim, Jinwon & Brownstone, David, 2013. "The impact of residential density on vehicle usage and fuel consumption: Evidence from national samples," Energy Economics, Elsevier, vol. 40(C), pages 196-206.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    8. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    9. William P. Anderson & Pavlos S. Kanaroglou & Eric J. Miller, 1996. "Urban Form, Energy and the Environment: A Review of Issues, Evidence and Policy," Urban Studies, Urban Studies Journal Limited, vol. 33(1), pages 7-35, February.
    10. Mokhtarian, Patricia L & Koenig, Brett E & Henderson, Dennis K, 1995. "The Travel and Emissions Impacts of Telecommuting for the State of California Telecommuting Pilot Project," University of California Transportation Center, Working Papers qt6rw695kc, University of California Transportation Center.
    11. Marlon G. Boarnet & Sharon Sarmiento, 1998. "Can Land-use Policy Really Affect Travel Behaviour? A Study of the Link between Non-work Travel and Land-use Characteristics," Urban Studies, Urban Studies Journal Limited, vol. 35(7), pages 1155-1169, June.
    12. Handy, Susan, 1993. "Regional Versus Local Accessibility: Implications for Nonwork Travel," University of California Transportation Center, Working Papers qt2z79q67d, University of California Transportation Center.
    13. Edward L. Glaeser & Joshua D. Gottlieb, 2006. "Urban Resurgence and the Consumer City," Urban Studies, Urban Studies Journal Limited, vol. 43(8), pages 1275-1299, July.
    14. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    15. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
    16. Glaeser, Edward L. & Kahn, Matthew E. & Rappaport, Jordan, 2008. "Why do the poor live in cities The role of public transportation," Journal of Urban Economics, Elsevier, vol. 63(1), pages 1-24, January.
    17. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    18. Crane, Randall, 1998. "Travel By Design?," University of California Transportation Center, Working Papers qt3pc4v6jj, University of California Transportation Center.
    19. Edward L. Glaeser & Matthew E. Kahn, 2001. "Decentralized Employment and the Transformation of the American City," Harvard Institute of Economic Research Working Papers 1912, Harvard - Institute of Economic Research.
    20. Antonio M. Bento & Maureen L. Cropper & Ahmed Mushfiq Mobarak & Katja Vinha, 2005. "The Effects of Urban Spatial Structure on Travel Demand in the United States," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 466-478, August.
    21. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    22. Nicholas J. Cox, 2011. "Stata tip 96: Cube roots," Stata Journal, StataCorp LP, vol. 11(1), pages 149-154, March.
    23. Marshall, Wesley & Garrick, Norman, 2012. "Community design and how much we drive," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(2), pages 5-21.
    24. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    25. Blomquist, Glenn C & Berger, Mark C & Hoehn, John P, 1988. "New Estimates of Quality of Life in Urban Areas," American Economic Review, American Economic Association, vol. 78(1), pages 89-107, March.
    26. Khattak, Asad J. & Rodriguez, Daniel, 2005. "Travel behavior in neo-traditional neighborhood developments: A case study in USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(6), pages 481-500, July.
    27. Matthew E. Kahn, 2000. "The environmental impact of suburbanization," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 569-586.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.
    2. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    3. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    4. Kim, Jinwon, 2012. "Endogenous vehicle-type choices in a monocentric city," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 749-760.
    5. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    6. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    7. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    8. Dillon, Harya S. & Saphores, Jean-Daniel & Boarnet, Marlon G., 2015. "The impact of urban form and gasoline prices on vehicle usage: Evidence from the 2009 National Household Travel Survey," Research in Transportation Economics, Elsevier, vol. 52(C), pages 23-33.
    9. Li, Phillip, 2011. "Estimation of sample selection models with two selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1099-1108, February.
    10. Kim, Jinwon, 2016. "Vehicle fuel-efficiency choices, emission externalities, and urban sprawl," Economics of Transportation, Elsevier, vol. 5(C), pages 24-36.
    11. Safirova, Elena A. & Houde, Sébastien & Harrington, Winston, 2007. "Spatial Development and Energy Consumption," RFF Working Paper Series dp-07-51, Resources for the Future.
    12. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    13. Tripathi, Amarnath & Sardar, Sucheta & Shyam, Hari Shankar, 2023. "Hybrid crops, income, and food security of smallholder families: Empirical evidence from poor states of India," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    14. Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2015. "Modeling travel behavior by the structural relationships between lifestyle, built environment and non-working trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 506-518.
    15. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    16. Kahn, Matthew E. & Walsh, Randall, 2015. "Cities and the Environment," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 405-465, Elsevier.
    17. Tae-Hyoung Tommy Gim, 2016. "Testing the Reciprocal Relationship between Attitudes and Land Use in Relation to Trip Frequencies," International Regional Science Review, , vol. 39(2), pages 203-227, April.
    18. Loder, Allister & Tanner, Reto & Axhausen, Kay W., 2017. "The impact of local work and residential balance on vehicle miles traveled: A new direct approach," Journal of Transport Geography, Elsevier, vol. 64(C), pages 139-149.
    19. Emine Coruh & Faruk Urak & Abdulbaki Bilgic & Steven T. Yen, 2022. "The role of household demographic factors in shaping transportation spending in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3485-3517, March.
    20. Holian, Matthew J. & Kahn, Matthew E., 2015. "Household carbon emissions from driving and center city quality of life," Ecological Economics, Elsevier, vol. 116(C), pages 362-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:40:y:2017:i:6:p:590-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.