IDEAS home Printed from https://ideas.repec.org/p/fip/fedfwp/2000-18.html
   My bibliography  Save this paper

Asymmetric cross-sectional dispersion in stock returns: evidence and implications

Author

Listed:
  • Gregory R. Duffee

Abstract

This paper documents that daily stock returns of both firms and industries are more dispersed when the overall stock market rises than when it falls. This positive relation is conceptually distinct from - and appears unrelated to - asymmetric return correlations. I argue that the source of the relation is positive skewness in sector-specific return shocks. I use this asymmetric behavior to explain a previously-observed puzzle: aggregate trading volume tends to be higher on days when the stock market rises than when it falls. The idea proposed here is that trading is more active on days when the market rises because on those days there is more non-market news on which to trade. I find that empirically, the bulk of the relation between volume and the signed market return is explained by variations in non-market volatility.

Suggested Citation

  • Gregory R. Duffee, 2001. "Asymmetric cross-sectional dispersion in stock returns: evidence and implications," Working Paper Series 2000-18, Federal Reserve Bank of San Francisco.
  • Handle: RePEc:fip:fedfwp:2000-18
    as

    Download full text from publisher

    File URL: https://www.frbsf.org/wp-content/uploads/wp00-18bk.pdf
    Download Restriction: no

    File URL: https://fraser.stlouisfed.org/title/working-papers-federal-reserve-bank-san-francisco-7038/asymmetric-cross-sectional-dispersion-stock-returns-639095
    Download Restriction: no

    File URL: https://fraser.stlouisfed.org/files/docs/historical/frbsf/workingpapers/frbsf_wp2000-18.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
    2. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    3. Epps, Thomas W., 1977. "Security Price Changes and Transaction Volumes: Some Additional Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(1), pages 141-146, March.
    4. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    5. Lo, Andrew W & Wang, Jiang, 2000. "Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 257-300.
    6. Solnik, Bruno H & Longin, François, 2000. "Extreme Correlation of International Equity Markets," CEPR Discussion Papers 2538, C.E.P.R. Discussion Papers.
    7. Harris, Lawrence, 1986. "Cross-Security Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(1), pages 39-46, March.
    8. Jones, Charles M & Kaul, Gautam & Lipson, Marc L, 1994. "Transactions, Volume, and Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 7(4), pages 631-651.
    9. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    10. Schwert, G William & Seguin, Paul J, 1990. "Heteroskedasticity in Stock Returns," Journal of Finance, American Finance Association, vol. 45(4), pages 1129-1155, September.
    11. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    12. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    13. Andrew Ang & Geert Bekaert, 1999. "International Asset Allocation with Time-Varying Correlations," NBER Working Papers 7056, National Bureau of Economic Research, Inc.
    14. Epps, Thomas W, 1975. "Security Price Changes and Transaction Volumes: Theory and Evidence," American Economic Review, American Economic Association, vol. 65(4), pages 586-597, September.
    15. Bruno Solnik & François Longin, 2000. "Extreme correlation of International Equity Markets," Working Papers hal-00598166, HAL.
    16. LONGIN, François & SOLNIK, Bruno, 2000. "Extreme correlation of international equity markets," HEC Research Papers Series 705, HEC Paris.
    17. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    18. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 127-141, June.
    19. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    20. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chun-Da & Demirer, Riza & Jategaonkar, Shrikant P., 2015. "Risk and return in the Chinese stock market: Does equity return dispersion proxy risk?," Pacific-Basin Finance Journal, Elsevier, vol. 33(C), pages 23-37.
    2. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    3. Riza Demirer & Rangan Gupta & Zhihui Lv & Wing-Keung Wong, 2019. "Equity Return Dispersion and Stock Market Volatility: Evidence from Multivariate Linear and Nonlinear Causality Tests," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    4. Ren, Boru & Lucey, Brian, 2023. "Herding in the Chinese renewable energy market: Evidence from a bootstrapping time-varying coefficient autoregressive model," Energy Economics, Elsevier, vol. 119(C).
    5. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    6. Rıza Demirer & Shrikant P. Jategaonkar, 2013. "The conditional relation between dispersion and return," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 125-134, September.
    7. Susan Sunila Sharma & Paresh Narayan & Kannan Thuraisamy, 2015. "Time-Varying Herding Behavior, Global Financial Crisis, and the Chinese Stock Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-31.
    8. Thomas Chiang & Lin Tan & Jiandong Li & Edward Nelling, 2013. "Dynamic Herding Behavior in Pacific-Basin Markets: Evidence and Implications," Multinational Finance Journal, Multinational Finance Journal, vol. 17(3-4), pages 165-200, September.
    9. Economou, Fotini & Katsikas, Epameinondas & Vickers, Gregory, 2016. "Testing for herding in the Athens Stock Exchange during the crisis period," Finance Research Letters, Elsevier, vol. 18(C), pages 334-341.
    10. Fei, Tianlun & Liu, Xiaoquan & Wen, Conghua, 2019. "Cross-sectional return dispersion and volatility prediction," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    2. Chang, Eric C. & Dong, Sen, 2006. "Idiosyncratic volatility, fundamentals, and institutional herding: Evidence from the Japanese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 14(2), pages 135-154, April.
    3. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    4. Rockinger, M. & Jondeau, E., 2001. "Conditional Dependency of Financial Series: An Application of Copulas," Working papers 82, Banque de France.
    5. Doojin RYU & Hyein SHIM, 2017. "Intraday Dynamics of Asset Returns, Trading Activities, and Implied Volatilities: A Trivariate GARCH Framework," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 45-61, June.
    6. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    7. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    8. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.
    9. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    11. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    14. Hutson, Elaine & Kearney, Colm & Lynch, Margaret, 2008. "Volume and skewness in international equity markets," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1255-1268, July.
    15. Lee, Kuan-Hui & Yang, Cheol-Won, 2022. "The world price of tail risk," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    16. Avouyi-Dovi, S. & Jondeau, E. & Lai Tong, C., 1997. "Effets “volume”, volatilité et transmissions internationales sur les marchés boursiers dans le G5," Working papers 42, Banque de France.
    17. Anthony Murphy & Marwan Izzeldin, 2005. "Order Flow, Transaction Clock, and Normality of Asset Returns: A Comment on Ané and Geman (2000)," Finance 0512005, University Library of Munich, Germany.
    18. Thomas C. Chiang & Jiandong Li, 2012. "Stock Returns and Risk: Evidence from Quantile," JRFM, MDPI, vol. 5(1), pages 1-39, December.
    19. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    20. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.

    More about this item

    Keywords

    Stock market; Econometric models;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfwp:2000-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Federal Reserve Bank of San Francisco Research Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbsfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.