Wpływ kryzysu finansowego na oszacowania wykładnika Hursta - analiza fraktalna cen wybranych metali
[Influence of financial crisis on Hurst exponent estimates - fractal analysis of selected metals prices]
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Weron, Rafał, 2002.
"Estimating long-range dependence: finite sample properties and confidence intervals,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
- Rafal Weron, 2001. "Estimating long range dependence: finite sample properties and confidence intervals," HSC Research Reports HSC/01/03, Hugo Steinhaus Center, Wroclaw University of Technology.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
- Ferreira, Paulo & Kristoufek, Ladislav, 2017. "What is new about covered interest parity condition in the European Union? Evidence from fractal cross-correlation regressions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 554-566.
- A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
- Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
- Kristoufek, Ladislav, 2018. "Fractality in market risk structure: Dow Jones Industrial components case," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 69-75.
- Alessandro Stringhi & Silvia Figini, 2016. "How to improve accuracy for DFA technique," Papers 1602.00629, arXiv.org.
- Kristoufek, Ladislav, 2019.
"Are the crude oil markets really becoming more efficient over time? Some new evidence,"
Energy Economics, Elsevier, vol. 82(C), pages 253-263.
- Ladislav Kristoufek, 2018. "Are the Crude Oil Markets Really Becoming More Efficient over Time? Some New Evidence," Working Papers IES 2018/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2018.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021.
"High-Frequency Volatility Forecasting of US Housing Markets,"
The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2019. "High-Frequency Volatility Forecasting of US Housing Markets," Working Papers 201977, University of Pretoria, Department of Economics.
- Erdős, Péter & Li, Youwei & Liu, Ruipeng & Mende, Alexander, 2021. "Same same but different – Stylized facts of CTA sub strategies," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Dowling, Michael, 2022. "Fertile LAND: Pricing non-fungible tokens," Finance Research Letters, Elsevier, vol. 44(C).
- Tajmirriahi, Mahnoosh & Amini, Zahra, 2021. "Modeling of seizure and seizure-free EEG signals based on stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Fernández, Isabel & Pacheco, José M. & Quintana, María P., 2010. "Pinkness of the North Atlantic Oscillation signal revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5801-5807.
- repec:hum:wpaper:sfb649dp2016-033 is not listed on IDEAS
- Kristoufek, Ladislav, 2012.
"How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
- Ladislav Kristoufek, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Papers 1201.3511, arXiv.org.
- Korotin, Vladimir & Dolgonosov, Maxim & Popov, Victor & Korotina, Olesya & Korolkova, Inna, 2019. "The Ukrainian crisis, economic sanctions, oil shock and commodity currency: Analysis based on EMD approach," Research in International Business and Finance, Elsevier, vol. 48(C), pages 156-168.
- Bo Zhang & Wei Zhou, 2021. "Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China," Land, MDPI, vol. 10(3), pages 1-21, March.
- Kristoufek, Ladislav, 2009. "R/S analysis and DFA: finite sample properties and confidence intervals," MPRA Paper 16446, University Library of Munich, Germany.
- Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2013.
"Measuring capital market efficiency: Global and local correlations structure,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
- Ladislav Kristoufek & Miloslav Vosvrda, 2012. "Measuring capital market efficiency: Global and local correlations structure," Papers 1208.1298, arXiv.org.
- Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
- Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
More about this item
Keywords
Rescaled range analysis; Hurst exponent; fractal dimension; financial crisis;All these keywords.
JEL classification:
- G01 - Financial Economics - - General - - - Financial Crises
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59710. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.