IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2012i1p132-142.html
   My bibliography  Save this article

Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold

Author

Listed:
  • Xinyu Zhang
  • Alan Wan
  • Sherry Zhou

Abstract

Claeskens and Hjort (2003) have developed a focused information criterion (FIC) for model selection that selects different models based on different focused functions with those functions tailored to the parameters singled out for interest. Hjort and Claeskens (2003) also have presented model averaging as an alternative to model selection, and suggested a local misspecification framework for studying the limiting distributions and asymptotic risk properties of post-model selection and model average estimators in parametric models. Despite the burgeoning literature on Tobit models, little work has been done on model selection explicitly in the Tobit context. In this article we propose FICs for variable selection allowing for such measures as mean absolute deviation, mean squared error, and expected expected linear exponential errors in a type I Tobit model with an unknown threshold. We also develop a model average Tobit estimator using values of a smoothed version of the FIC as weights. We study the finite-sample performance of model selection and model average estimators resulting from various FICs via a Monte Carlo experiment, and demonstrate the possibility of using a model screening procedure before combining the models. Finally, we present an example from a well-known study on married women's working hours to illustrate the estimation methods discussed. This article has supplementary material online.

Suggested Citation

  • Xinyu Zhang & Alan Wan & Sherry Zhou, 2012. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142.
  • Handle: RePEc:taf:jnlbes:v:30:y:2012:i:1:p:132-142
    DOI: 10.1198/jbes.2011.10075
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1198/jbes.2011.10075
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1198/jbes.2011.10075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:1:p:132-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.