IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2020029.html
   My bibliography  Save this paper

Exponential-Type GARCH Models With Linear-in-Variance Risk Premium

Author

Listed:
  • Hafner, Christian

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Kyriakopoulou, Dimitra

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

One of the implications of the intertemporal capital asset pricing model (CAPM) is that the risk premium of the market portfolio is a linear function of its variance. Yet, esti- mation theory of classical GARCH-in-mean models with linear-in-variance risk premium requires strong assumptions and is incomplete. We show that exponential-type GARCH models such as EGARCH or Log-GARCH are more natural in dealing with linear-in- variance risk premia. For the popular and more di¢ cult case of EGARCH-in-mean, we derive conditions for the existence of a unique stationary and ergodic solution and in- vertibility following a stochastic recurrence equation approach. We then show consistency and asymptotic normality of the quasi maximum likelihood estimator under weak moment assumptions. An empirical application estimates the dynamic risk premia of a variety of stock indices using both EGARCH-M and Log-GARCH-M models.

Suggested Citation

  • Hafner, Christian & Kyriakopoulou, Dimitra, 2020. "Exponential-Type GARCH Models With Linear-in-Variance Risk Premium," LIDAM Reprints ISBA 2020029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2020029
    DOI: https://doi.org/10.1080/07350015.2019.1691564
    Note: In: Journal of Business & Economic Statistics - Vol. To appear
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hafner, Christian M. & Linton, Oliver, 2017. "An Almost Closed Form Estimator For The Egarch Model," Econometric Theory, Cambridge University Press, vol. 33(4), pages 1013-1038, August.
    2. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    3. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, January.
    4. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, January.
    5. St. Pierre, Eileen F., 1998. "Estimating EGARCH-M models: Science or art?," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(2), pages 167-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    2. Rewat Khanthaporn, 2022. "Analysis of Nonlinear Comovement of Benchmark Thai Government Bond Yields," PIER Discussion Papers 183, Puey Ungphakorn Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    2. Victor Aguirregabiria, 2006. "Another Look at the Identification of Dynamic Discrete Decision Processes: With an Application to Retirement Behavior," 2006 Meeting Papers 169, Society for Economic Dynamics.
    3. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    4. Carlos Escanciano, J., 2008. "Joint and marginal specification tests for conditional mean and variance models," Journal of Econometrics, Elsevier, vol. 143(1), pages 74-87, March.
    5. Geweke, John & Petrella, Lea, 2014. "Likelihood-based inference for regular functions with fractional polynomial approximations," Journal of Econometrics, Elsevier, vol. 183(1), pages 22-30.
    6. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    7. repec:hum:wpaper:sfb649dp2009-028 is not listed on IDEAS
    8. Shintani, Mototsugu, 2001. "A simple cointegrating rank test without vector autoregression," Journal of Econometrics, Elsevier, vol. 105(2), pages 337-362, December.
    9. William A. Barnett & Milka Kirova & Meenakshi Pasupathy, 1996. "Technology Modeling: Curvature is not Sufficient for Regularity," Econometrics 9602002, University Library of Munich, Germany, revised 24 Jun 1999.
    10. Roger Klein & Francis Vella, 2009. "A semiparametric model for binary response and continuous outcomes under index heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 735-762.
    11. P. Kearns & A.R. Pagan, 1993. "Australian Stock Market Volatility: 1875–1987," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 163-178, June.
    12. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    13. Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big data analytics: a new perspective," Globalization Institute Working Papers 268, Federal Reserve Bank of Dallas.
    14. Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.
    15. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Testing the martingale difference hypothesis using integrated regression functions," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2278-2294, December.
    16. Lu, Xuewen & Burke, M.D., 2005. "Censored multiple regression by the method of average derivatives," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 182-205, July.
    17. Frölich, Markus & Puhani, Patrick A., 2002. "Immigration and Heterogeneous Labor in Western Germany," IZA Discussion Papers 418, Institute of Labor Economics (IZA).
    18. SCHAFGANS, Marcia M.A. & ZINDE-WALSH, Victoria, 2007. "Robust Average Derivative Estimation," Cahiers de recherche 12-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    19. A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018. "A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models," Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
    20. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).

    More about this item

    Keywords

    EGARCH; GARCH-in-mean; Log-GARCH; Maximum likelihood; Risk premium; Stochastic recurrence equation;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2020029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.