IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/4235.html
   My bibliography  Save this paper

Forecasting VARMA processes using VAR models and subspace-based state space models

Author

Listed:
  • Izquierdo, Segismundo S.
  • Hernández, Cesáreo
  • del Hoyo, Juan

Abstract

VAR modelling is a frequent technique in econometrics for linear processes. VAR modelling offers some desirable features such as relatively simple procedures for model specification (order selection) and the possibility of obtaining quick non-iterative maximum likelihood estimates of the system parameters. However, if the process under study follows a finite-order VARMA structure, it cannot be equivalently represented by any finite-order VAR model. On the other hand, a finite-order state space model can represent a finite-order VARMA process exactly, and, for state-space modelling, subspace algorithms allow for quick and non-iterative estimates of the system parameters, as well as for simple specification procedures. Given the previous facts, we check in this paper whether subspace-based state space models provide better forecasts than VAR models when working with VARMA data generating processes. In a simulation study we generate samples from different VARMA data generating processes, obtain VAR-based and state-space-based models for each generating process and compare the predictive power of the obtained models. Different specification and estimation algorithms are considered; in particular, within the subspace family, the CCA (Canonical Correlation Analysis) algorithm is the selected option to obtain state-space models. Our results indicate that when the MA parameter of an ARMA process is close to 1, the CCA state space models are likely to provide better forecasts than the AR models. We also conduct a practical comparison (for two cointegrated economic time series) of the predictive power of Johansen restricted-VAR (VEC) models with the predictive power of state space models obtained by the CCA subspace algorithm, including a density forecasting analysis.

Suggested Citation

  • Izquierdo, Segismundo S. & Hernández, Cesáreo & del Hoyo, Juan, 2006. "Forecasting VARMA processes using VAR models and subspace-based state space models," MPRA Paper 4235, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:4235
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/4235/1/MPRA_paper_4235.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Godolphin, E.J. & Triantafyllopoulos, Kostas, 2006. "Decomposition of time series models in state-space form," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2232-2246, May.
    2. Wagner, Martin, 1999. "VAR Cointegration in VARMA Models," Economics Series 65, Institute for Advanced Studies.
    3. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
    4. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    5. Martin Wagner, 2004. "A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
    6. Dietmar Bauer, 2005. "Comparing the CCA Subspace Method to Pseudo Maximum Likelihood Methods in the case of No Exogenous Inputs," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 631-668, September.
    7. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    8. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    9. Dietmar Bauer & Martin Wagner, 2003. "The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study," Diskussionsschriften dp0308, Universitaet Bern, Departement Volkswirtschaft.
    10. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(1), pages 1-27, March.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    13. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    14. Knusel, Leo, 2005. "On the accuracy of statistical distributions in Microsoft Excel 2003," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 445-449, March.
    15. Takane, Yoshio & Yanai, Haruo & Hwang, Heungsun, 2006. "An improved method for generalized constrained canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 221-241, January.
    16. McCullough, B.D. & Wilson, Berry, 2005. "On the accuracy of statistical procedures in Microsoft Excel 2003," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1244-1252, June.
    17. Bengtsson, Thomas & Cavanaugh, Joseph E., 2006. "An improved Akaike information criterion for state-space model selection," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2635-2654, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Marie Dufour & Tarek Jouini, 2011. "Asymptotic Distributions for Some Quasi-Efficient Estimators in Echelon VARMA Models," CIRANO Working Papers 2011s-25, CIRANO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Valente & Lucio Sarno, 2005. "Modelling and forecasting stock returns: exploiting the futures market, regime shifts and international spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 345-376.
    2. Richard H. Clarida & Lucio Sarno & Mark P. Taylor & Giorgio Valente, 2006. "The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1193-1224, May.
    3. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    4. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    5. Segismundo Izquierdo & Ces�reo Hern�ndez & Javier Pajares, 2005. "State Space Modelling of Cointegrated Systems using Subspace Algorithms," Econometrics 0509010, University Library of Munich, Germany, revised 07 Feb 2006.
    6. Martin Wagner, 2004. "A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
    7. Lucio Sarno, 2003. "Nonlinear Exchange Rate Models: A Selective Overview," Rivista di Politica Economica, SIPI Spa, vol. 93(4), pages 3-46, July-Augu.
    8. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    9. Trino-Manuel Niguez & Javier Perote, 2004. "Forecasting the density of asset returns," STICERD - Econometrics Paper Series 479, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Yongmiao Hong & Haitao Li & Feng Zhao, 2013. "Can the Random Walk Model be Beaten in Out-of-Sample Density Forecasts? Evidence from Intraday Forei," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    11. Sarno, Lucio & Valente, Giorgio, 2005. "Empirical exchange rate models and currency risk: some evidence from density forecasts," Journal of International Money and Finance, Elsevier, vol. 24(2), pages 363-385, March.
    12. Polanski, Arnold & Stoja, Evarist & Zhang, Ren, 2013. "Multidimensional risk and risk dependence," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3286-3294.
    13. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
    14. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    15. Ahoniemi, Katja & Lanne, Markku, 2009. "Joint modeling of call and put implied volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 239-258.
    16. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    17. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    18. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    19. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    20. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.

    More about this item

    Keywords

    subspace algorithms; VAR; forecasting; cointegration; Johansen; CCA;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:4235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.