IDEAS home Printed from https://ideas.repec.org/p/ube/dpvwib/dp0308.html
   My bibliography  Save this paper

The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study

Author

Listed:
  • Dietmar Bauer
  • Martin Wagner

Abstract

This paper presents a simulation study that assesses the finite sample performance of the subspace algorithm cointegration analysis developed in Bauer und Wagner (2002b). The method is formulated in the state space framework, which is equivalent to the VARMA framework, in a sense made precise in the paper. This implies applicability to VARMA processes. The paper proposes and compares six different tests for the cointegrating rank. The simulations investigate four issues: the order estimation, the size performance of the proposed tests, the accuracy of the estimation of the cointegrating space and the forecasting performance. of the state space models estimated by the proposed method. The simulations are performed on a set of trivariate processes with cointegrating ranks ranging from zero to three as well as on processes of output dimension four and cointegrating rank two. We analyze the influence of the sample size on the results as well as the sensitivity of the results with respect to stable poles approaching the unit circle. All results are compared to benchmark results obtained by applying the Johansen procedure on VAR models fitted to the data. The simulations show advantages of subspace algorithm cointegration analysis for the small sample performance of the tests for the cointegrating rank in many cases. However, we find that the accuracy of the subspace algorithm based estimation of the cointegrating space is unsatisfactory for the four-dimensional simulated systems. The forecasting performance is grosso modo comparable to the results obtained by applying the Johansen methodology on VAR approximations, although for very small sample sizes the forecasts based on VAR approximations outperform the subspace forecasts. The appendix provides critical values for the test statistics

Suggested Citation

  • Dietmar Bauer & Martin Wagner, 2003. "The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study," Diskussionsschriften dp0308, Universitaet Bern, Departement Volkswirtschaft.
  • Handle: RePEc:ube:dpvwib:dp0308
    as

    Download full text from publisher

    File URL: https://repec.vwiit.ch/dp/dp0308.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    2. Saikkonen, Pentti & Luukkonen, Ritva, 1997. "Testing cointegration in infinite order vector autoregressive processes," Journal of Econometrics, Elsevier, vol. 81(1), pages 93-126, November.
    3. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    4. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    5. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    6. Aoki, Masanao & Havenner, Arthur, 1989. "A method for approximate representation of vector-valued time series and its relation to two alternatives," Journal of Econometrics, Elsevier, vol. 42(2), pages 181-199, October.
    7. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(1), pages 1-27, March.
    8. repec:cup:etheor:v:8:y:1992:i:1:p:1-27 is not listed on IDEAS
    9. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izquierdo, Segismundo S. & Hernández, Cesáreo & del Hoyo, Juan, 2006. "Forecasting VARMA processes using VAR models and subspace-based state space models," MPRA Paper 4235, University Library of Munich, Germany.
    2. Martin Wagner & Jaroslava Hlouskova, 2010. "The Performance of Panel Cointegration Methods: Results from a Large Scale Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 182-223, April.
    3. Martin Wagner, 2004. "A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
    4. Segismundo Izquierdo & Ces�reo Hern�ndez & Javier Pajares, 2005. "State Space Modelling of Cointegrated Systems using Subspace Algorithms," Econometrics 0509010, University Library of Munich, Germany, revised 07 Feb 2006.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Dietmar & Wagner, Martin, 2009. "Using subspace algorithm cointegration analysis: Simulation performance and application to the term structure," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1954-1973, April.
    2. Martin Wagner, 2004. "A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
    3. Martin Wagner, 2010. "Cointegration analysis with state space models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 273-305, September.
    4. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    5. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    6. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    7. Dietmar Bauer & Martin Wagner, 2005. "Autoregressive Approximations of Multiple Frequency I(1) Processes," Economics Working Papers ECO2005/09, European University Institute.
    8. Mauricio, Jose Alberto, 2006. "Exact maximum likelihood estimation of partially nonstationary vector ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3644-3662, August.
    9. Richard H. Clarida & Lucio Sarno & Mark P. Taylor & Giorgio Valente, 2006. "The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1193-1224, May.
    10. Beckmann, Joscha & Czudaj, Robert, 2013. "Is there a homogeneous causality pattern between oil prices and currencies of oil importers and exporters?," Energy Economics, Elsevier, vol. 40(C), pages 665-678.
    11. Risso, W. Adrián & Punzo, Lionello F. & Carrera, Edgar J. Sánchez, 2013. "Economic growth and income distribution in Mexico: A cointegration exercise," Economic Modelling, Elsevier, vol. 35(C), pages 708-714.
    12. Lucio Sarno & Giorgio Valente & Mark E. Wohar, 2004. "Monetary Fundamentals and Exchange Rate Dynamics under Different Nominal Regimes," Economic Inquiry, Western Economic Association International, vol. 42(2), pages 179-193, April.
    13. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Beckmann, Joscha & Czudaj, Robert, 2013. "Gold as an inflation hedge in a time-varying coefficient framework," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 208-222.
    15. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
    16. Yicong Lin & Hanno Reuvers, 2019. "Efficient Estimation by Fully Modified GLS with an Application to the Environmental Kuznets Curve," Papers 1908.02552, arXiv.org, revised Aug 2020.
    17. Shintani, Mototsugu, 2001. "A simple cointegrating rank test without vector autoregression," Journal of Econometrics, Elsevier, vol. 105(2), pages 337-362, December.
    18. Balcilar, Mehmet & Gungor, Hasan & Hammoudeh, Shawkat, 2015. "The time-varying causality between spot and futures crude oil prices: A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 51-71.
    19. Martin Wagner & Jaroslava Hlouskova, 2010. "The Performance of Panel Cointegration Methods: Results from a Large Scale Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 182-223, April.
    20. Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    More about this item

    Keywords

    State space representation; cointegration; subspace algorithms; simulation study;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ube:dpvwib:dp0308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Franz Koelliker (email available below). General contact details of provider: https://edirc.repec.org/data/vwibech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.