IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v66y2004i3p399-424.html
   My bibliography  Save this article

A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis

Author

Listed:
  • Martin Wagner

Abstract

The methods listed in the title are compared by means of a simulation study and a real world application. The aspects compared via simulations are the performance of the tests for the cointegrating rank and the quality of the estimated cointegrating space. The subspace algorithm method, formulated in the state space framework and thus applicable for vector autoregressive moving average (VARMA) processes, performs at least comparably to the Johansen method. Both the Johansen procedure and the subspace algorithm cointegration analysis perform significantly better than Bierens’ method. The real‐world application is an investigation of the long‐run properties of the one‐sector neoclassical growth model for Austria. The results do not fully support the implications of the model with respect to cointegration. Furthermore, the results differ greatly between the different methods. The amount of variability depends strongly upon the number of variables considered and huge differences occur for the full system with six variables. Therefore we conclude that the results of such applications with about five or six variables and 100 observations, which are typical in the applied literature, should possibly be interpreted with more caution than is commonly done.

Suggested Citation

  • Martin Wagner, 2004. "A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
  • Handle: RePEc:bla:obuest:v:66:y:2004:i:3:p:399-424
    DOI: 10.1111/j.1468-0084.2004.00085.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-0084.2004.00085.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-0084.2004.00085.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    2. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(1), pages 1-27, March.
    3. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    4. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    5. repec:cup:etheor:v:8:y:1992:i:1:p:1-27 is not listed on IDEAS
    6. Wagner, Martin, 1999. "VAR Cointegration in VARMA Models," Economics Series 65, Institute for Advanced Studies.
    7. repec:zbw:bofrdp:1998_029 is not listed on IDEAS
    8. Saikkonen, Pentti & Luukkonen, Ritva, 1997. "Testing cointegration in infinite order vector autoregressive processes," Journal of Econometrics, Elsevier, vol. 81(1), pages 93-126, November.
    9. Neusser, Klaus, 1991. "Testing the long-run implications of the neoclassical growth model," Journal of Monetary Economics, Elsevier, vol. 27(1), pages 3-37, February.
    10. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
    11. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    12. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    13. Kunst, Robert & Neusser, Klaus, 1990. "Cointegration in a Macroeconomic System," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(4), pages 351-365, Oct.-Dec..
    14. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    15. Seo, Byeongseon, 1998. "Tests For Structural Change In Cointegrated Systems," Econometric Theory, Cambridge University Press, vol. 14(2), pages 222-259, April.
    16. Poskitt, Don S, 2000. "Strongly Consistent Determination of Cointegrating Rank via Canonical Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 77-90, January.
    17. H. Peter Boswijk & Andre Lucas & Nick Taylor, 1999. "A Comparison of Parametric, Semi-nonparametric, Adaptive, and Nonparametric Cointegration Tests," Tinbergen Institute Discussion Papers 99-012/4, Tinbergen Institute.
    18. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    19. Hargreaves, Colin P. (ed.), 1994. "Non-Stationary Time Series Analysis and Cointegration," OUP Catalogue, Oxford University Press, number 9780198773924.
    20. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    21. Bierens, H.J., 1995. "Nonparametric cointegration analysis," Other publications TiSEM aa45c4fa-ef46-43a6-b14e-b, Tilburg University, School of Economics and Management.
    22. Bierens, Herman J., 1997. "Nonparametric cointegration analysis," Journal of Econometrics, Elsevier, vol. 77(2), pages 379-404, April.
    23. Dietmar Bauer & Martin Wagner, 2003. "The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study," Diskussionsschriften dp0308, Universitaet Bern, Departement Volkswirtschaft.
    24. Andre Lucas, 1998. "Inference on cointegrating ranks using lr and lm tests based on pseudo-likelihoods," Econometric Reviews, Taylor & Francis Journals, vol. 17(2), pages 185-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Wagner, 2010. "Cointegration analysis with state space models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 273-305, September.
    2. Izquierdo, Segismundo S. & Hernández, Cesáreo & del Hoyo, Juan, 2006. "Forecasting VARMA processes using VAR models and subspace-based state space models," MPRA Paper 4235, University Library of Munich, Germany.
    3. Martin Wagner & Jaroslava Hlouskova, 2010. "The Performance of Panel Cointegration Methods: Results from a Large Scale Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 182-223, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    2. Martin Wagner, 2010. "Cointegration analysis with state space models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 273-305, September.
    3. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
    4. Dietmar Bauer & Martin Wagner, 2003. "The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study," Diskussionsschriften dp0308, Universitaet Bern, Departement Volkswirtschaft.
    5. Bauer, Dietmar & Wagner, Martin, 2009. "Using subspace algorithm cointegration analysis: Simulation performance and application to the term structure," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1954-1973, April.
    6. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    7. Shintani, Mototsugu, 2001. "A simple cointegrating rank test without vector autoregression," Journal of Econometrics, Elsevier, vol. 105(2), pages 337-362, December.
    8. Alain Hecq & Franz Palm & Jean-Pierre Urbain, 2001. "Testing for Common Cyclical Features in Var Models with Cointegration," CESifo Working Paper Series 451, CESifo.
    9. Huh, Hyeon-seung & Kim, David, 2013. "An empirical test of exogenous versus endogenous growth models for the G-7 countries," Economic Modelling, Elsevier, vol. 32(C), pages 262-272.
    10. Chang, Juin-Jen & Lin, Chang-Ching & Lin, Hsieh-Yu, 2016. "Great ratios and international openness," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 110-121.
    11. David Harvey & Stephen Leybourne & Paul Newbold, 2003. "How great are the great ratios?," Applied Economics, Taylor & Francis Journals, vol. 35(2), pages 163-177.
    12. Dietmar Bauer & Martin Wagner, 2005. "Autoregressive Approximations of Multiple Frequency I(1) Processes," Economics Working Papers ECO2005/09, European University Institute.
    13. Bohl, Martin T., 1999. "Testing the Long-Run Implications of the Neoclassical Stochastic Growth Model: A Panel-Based Unit Root Investigation for West German Lander, 1970-1994," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 155-164, January.
    14. Izquierdo, Segismundo S. & Hernández, Cesáreo & del Hoyo, Juan, 2006. "Forecasting VARMA processes using VAR models and subspace-based state space models," MPRA Paper 4235, University Library of Munich, Germany.
    15. Mauricio, Jose Alberto, 2006. "Exact maximum likelihood estimation of partially nonstationary vector ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3644-3662, August.
    16. M.S.Rafiq, 2006. "Business Cycle Moderation - Good Policies or Good Luck: Evidence and Explanations for the Euro Area," Discussion Paper Series 2006_21, Department of Economics, Loughborough University.
    17. Andersson, Björn, 1999. "On the Causality Between Saving and Growth: Long- and Short-Run Dynamics and Country Heterogeneity," Working Paper Series 1999:18, Uppsala University, Department of Economics.
    18. Issler, João Victor & Ferreira, Pedro Cavalcanti, 1998. "Time-Series Properties and Empirical Evidence of Growth and Infrastructure," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 18(1), May.
    19. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:66:y:2004:i:3:p:399-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.