A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data
Author
Abstract
Suggested Citation
DOI: 10.1515/1544-6115.1778
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jianhua Z. Huang & Haipeng Shen, 2004. "Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 515-534, December.
- Ma, Ping & Zhong, Wenxuan, 2008. "Penalized Clustering of Large-Scale Functional Data With Multiple Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 625-636, June.
- F. Hong & H. Li, 2006. "Functional Hierarchical Models for Identifying Genes with Different Time-Course Expression Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 534-544, June.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Yuan, Ming & Kendziorski, Christina, 2006. "Hidden Markov Models for Microarray Time Course Data in Multiple Biological Conditions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1323-1332, December.
- Sun, Wenguang & Wei, Zhi, 2011. "Multiple Testing for Pattern Identification, With Applications to Microarray Time-Course Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 73-88.
- Alfo' Marco & Farcomeni Alessio & Tardella Luca, 2011. "A Three Component Latent Class Model for Robust Semiparametric Gene Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-19, January.
- Alessio Farcomeni, 2007. "Some Results on the Control of the False Discovery Rate under Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 275-297, June.
- Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
- Zeng, Yujing & Garcia-Frias, Javier, 2006. "A novel HMM-based clustering algorithm for the analysis of gene expression time-course data," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2472-2494, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alessio Farcomeni & Luca Greco, 2015. "S-estimation of hidden Markov models," Computational Statistics, Springer, vol. 30(1), pages 57-80, March.
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014.
"Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
- Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Raggi, Davide & Bordignon, Silvano, 2012.
"Long memory and nonlinearities in realized volatility: A Markov switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
- S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
- Nima Nonejad, 2013. "Time-Consistency Problem and the Behavior of US Inflation from 1970 to 2008," CREATES Research Papers 2013-25, Department of Economics and Business Economics, Aarhus University.
- Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
- Bauwens, Luc & Rombouts, Jeroen V.K., 2012.
"On marginal likelihood computation in change-point models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3415-3429.
- Luc Bauwens & Jeroen V.K. Rombouts, 2009. "On Marginal Likelihood Computation in Change-point Models," Cahiers de recherche 0942, CIRPEE.
- BAUWENS, Luc & ROMBOUTS, Jeroen, 2009. "On marginal likelihood computation in change-point models," LIDAM Discussion Papers CORE 2009061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & ROMBOUTS, Jeroen VK, 2012. "On marginal likelihood computation in change-point models," LIDAM Reprints CORE 2403, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
- Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021.
"Stochastic model specification in Markov switching vector error correction models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
- Huber, Florian & Pfarrhofer, Michael & Zörner, Thomas O., 2018. "Stochastic model specification in Markov switching vector error correction models," Working Papers in Economics 2018-3, University of Salzburg.
- Niko Hauzenberger & Florian Huber & Michael Pfarrhofer & Thomas O. Zorner, 2018. "Stochastic model specification in Markov switching vector error correction models," Papers 1807.00529, arXiv.org, revised Sep 2019.
- Guisinger, Amy Y. & Owyang, Michael T. & Soques, Daniel, 2024.
"Industrial Connectedness and Business Cycle Comovements,"
Econometrics and Statistics, Elsevier, vol. 29(C), pages 132-149.
- Amy Y. Guisinger & Michael T. Owyang & Daniel Soques, 2020. "Industrial Connectedness and Business Cycle Comovements," Working Papers 2020-052, Federal Reserve Bank of St. Louis, revised 04 Aug 2021.
- Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
- Stefano Grassi & Francesco Ravazzolo & Joaquin Vespignani & Giorgio Vocalelli, 2023.
"Global Money Supply and Energy and Non-Energy Commodity Prices: A MS-TV-VAR Approach,"
CAMA Working Papers
2023-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Stefano Grassi & Francesco Ravazzolo & Joaquin Vespignani & Giorgio Vocalelli, 2023. "Global money supply and energy and non-energy commodity prices: A MS-TV-VAR approach," BEMPS - Bozen Economics & Management Paper Series BEMPS100, Faculty of Economics and Management at the Free University of Bozen.
- Grassi, Stefano & Ravazzolo, Francesco & Vespignani, Joaquin & Vocalelli, Giorgio, 2023. "Global money supply and energy and non-energy commodity prices: A MS-TV-VAR approach," Working Papers 2023-01, University of Tasmania, Tasmanian School of Business and Economics.
- Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
- Vinciotti Veronica & Yu Keming, 2009. "M-quantile Regression Analysis of Temporal Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, September.
- Yu Chuan Tai & Terence P. Speed, 2009. "On Gene Ranking Using Replicated Microarray Time Course Data," Biometrics, The International Biometric Society, vol. 65(1), pages 40-51, March.
- Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
- Nima Nonejad, 2013. "Long Memory and Structural Breaks in Realized Volatility: An Irreversible Markov Switching Approach," CREATES Research Papers 2013-26, Department of Economics and Business Economics, Aarhus University.
- Coffey Norma & Hinde John, 2011. "Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, May.
- Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
- Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "Bayesian Vector Autoregressions with Non-Gaussian Shocks," CReMFi Discussion Papers 5, CReMFi, School of Economics and Finance, QMUL.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Mumtaz, Haroon & Theodoridis, Konstantinos, 2017.
"Common and country specific economic uncertainty,"
Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
- Haroon Mumtaz & Konstantinos Theodoridis, 2015. "Common and Country Specific Economic Uncertainty," Working Papers 752, Queen Mary University of London, School of Economics and Finance.
- Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
More about this item
Keywords
HMM; Bayesian statistics; MCMC; Microarray time course data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:4:n:3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.