IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/36377.html
   My bibliography  Save this paper

Selection of Control Variables in Propensity Score Matching: Evidence from a Simulation Study

Author

Listed:
  • Nguyen Viet, Cuong

Abstract

Propensity score matching is a widely-used method to measure the effect of a treatment in social as well as health sciences. An important issue in propensity score matching is how to select conditioning variables in estimation of the propensity score. It is commonly mentioned that only variables which affect both program participation and outcomes are selected. Using Monte Carlo simulation, this paper shows that efficiency in estimation of the Average Treatment Effect on the Treated can be gained if all the available observed variables in the outcome equation are included in the estimation of the propensity score.

Suggested Citation

  • Nguyen Viet, Cuong, 2012. "Selection of Control Variables in Propensity Score Matching: Evidence from a Simulation Study," MPRA Paper 36377, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:36377
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/36377/1/MPRA_paper_36377.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    4. Augurzky, Boris & Schmidt, Christoph M., 2001. "The Propensity Score: A Means to An End," IZA Discussion Papers 271, Institute of Labor Economics (IZA).
    5. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    6. Cuong, Nguyen Viet, 2009. "Impact evaluation of multiple overlapping programs under a conditional independence assumption," Research in Economics, Elsevier, vol. 63(1), pages 27-54, March.
    7. Bryson, Alex & Dorsett, Richard & Purdon, Susan, 2002. "The use of propensity score matching in the evaluation of active labour market policies," LSE Research Online Documents on Economics 4993, London School of Economics and Political Science, LSE Library.
    8. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    9. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Zhong Zhao, 2004. "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 91-107, February.
    12. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    13. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    14. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    15. Michael Lechner, 2002. "Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 59-82, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Ying & Qu, Mei & Liu, Can & Yao, Shunbo, 2020. "Land tenure, logging rights, and tree planting: Empirical evidence from smallholders in China," China Economic Review, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    4. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    5. Christian Volpe Martincus & Jerónimo Carballo, 2012. "Export promotion activities in developing countries: What kind of trade do they promote?," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 21(4), pages 539-578, June.
    6. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    7. Luis Aranda, 2013. "Doubling Up: A Gift or a Shame? Multigenerational Households and Parental Depression of Older Europeans," Working Papers 2013:29, Department of Economics, University of Venice "Ca' Foscari", revised 2013.
    8. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    9. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    10. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    11. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    12. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    13. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    14. John C. Ham & Xianghong Li & Patricia B. Reagan, 2004. "Propensity Score Matching, a Distance-Based Measure of Migration, and the Wage Growth of Young Men," Working Papers 2004_3, York University, Department of Economics.
    15. Christian Volpe Martincus, 2010. "Odyssey in International Markets: An Assessment of the Effectiveness of Export Promotion in Latin America and the Caribbean," IDB Publications (Books), Inter-American Development Bank, number 16458, February.
    16. Ham, John C. & Li, Xianghong & Reagan, Patricia B., 2011. "Matching and semi-parametric IV estimation, a distance-based measure of migration, and the wages of young men," Journal of Econometrics, Elsevier, vol. 161(2), pages 208-227, April.
    17. Feddersen, Arne & Maennig, Wolfgang, 2012. "Sectoral labour market effects of the 2006 FIFA World Cup," Labour Economics, Elsevier, vol. 19(6), pages 860-869.
    18. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    19. Arpino, Bruno & Mealli, Fabrizia, 2011. "The specification of the propensity score in multilevel observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
    20. Christian Volpe Martincus & Jerónimo Carballo, 2012. "Export promotion activities in developing countries: What kind of trade do they promote?," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 21(4), pages 539-578, June.

    More about this item

    Keywords

    Impact evaluation; treatment effect; propensity score matching; covariate selection; Monte Carlo;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • H43 - Public Economics - - Publicly Provided Goods - - - Project Evaluation; Social Discount Rate
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:36377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.