IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i2p301-326.html
   My bibliography  Save this article

Forecast performance and bubble analysis in noncausal MAR(1, 1) processes

Author

Listed:
  • Christian Gourieroux
  • Andrew Hencic
  • Joann Jasiak

Abstract

This paper examines the performance of nonlinear short‐term forecasts of noncausal processes from closed‐form functional predictive density estimators. The processes considered have mixed causal–noncausal MAR(1, 1) dynamics and non‐Gaussian distributions with either finite or infinite variance. The quality of point forecasts is affected by spikes and bubbles in the trajectories of these processes, which also characterize many financial and economic time series. This is due to deformations of estimated predictive densities from multimodality during explosive episodes. We show that two‐step‐ahead predictive densities of future trajectories based on the MAR(1, 1) Cauchy process can be used as a new graphical tool for early detection of bubble outsets and bursts. The method is applied to the Bitcoin/US dollar exchange rates and commodity futures.

Suggested Citation

  • Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:2:p:301-326
    DOI: 10.1002/for.2716
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2716
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1079-1134, November.
    2. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    3. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    4. Christian Gouriéroux & Jean-Michel Zakoïan, 2015. "On Uniqueness of Moving Average Representations of Heavy-tailed Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 876-887, November.
    5. Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
    6. Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
    7. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    8. Phillips, Peter C.B. & Shi, Shu-Ping, 2018. "Financial Bubble Implosion And Reverse Regression," Econometric Theory, Cambridge University Press, vol. 34(4), pages 705-753, August.
    9. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1043-1078, November.
    10. C. Gourieroux & A. Monfort, 2004. "Infrequent Extreme Risks," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 29(1), pages 5-22, June.
    11. Karapanagiotidis, Paul, 2014. "Dynamic modeling of commodity futures prices," MPRA Paper 56805, University Library of Munich, Germany.
    12. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    13. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hecq, Alain & Issler, João Victor & Voisin, Elisa, 2024. "A short term credibility index for central banks under inflation targeting: An application to Brazil," Journal of International Money and Finance, Elsevier, vol. 143(C).
    2. Foued Saâdaoui & Hana Rabbouch, 2024. "Structured multifractal scaling of the principal cryptocurrencies: Examination using a self‐explainable machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2917-2934, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    2. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    3. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    4. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    5. Hecq, Alain & Issler, João Victor & Voisin, Elisa, 2024. "A short term credibility index for central banks under inflation targeting: An application to Brazil," Journal of International Money and Finance, Elsevier, vol. 143(C).
    6. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    7. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    8. F. Blasques & S.J. Koopman & G. Mingoli & S. Telg, 2024. "A Novel Test for the Presence of Local Explosive Dynamics," Tinbergen Institute Discussion Papers 24-036/III, Tinbergen Institute.
    9. Blasques, Francisco & Koopman, Siem Jan & Nientker, Marc, 2022. "A time-varying parameter model for local explosions," Journal of Econometrics, Elsevier, vol. 227(1), pages 65-84.
    10. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    11. Li, Yanglin & Wang, Shaoping & Zhao, Qing, 2021. "When does the stock market recover from a crisis?," Finance Research Letters, Elsevier, vol. 39(C).
    12. Christian Kubitza, 2021. "Tackling the Volatility Paradox: Spillover Persistence and Systemic Risk," ECONtribute Discussion Papers Series 079, University of Bonn and University of Cologne, Germany.
    13. Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
    14. Gianluca Cubadda & Alain Hecq & Sean Telg, 2019. "Detecting Co‐Movements in Non‐Causal Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 697-715, June.
    15. Yu, Lu & Li, Yanglin, 2023. "Testing factor models when asset bubbles occur: A time-varying perspective," Economic Modelling, Elsevier, vol. 124(C).
    16. Esteve, Vicente & Prats, María A., 2023. "Testing explosive bubbles with time-varying volatility: The case of Spanish public debt," Finance Research Letters, Elsevier, vol. 51(C).
    17. Gomis-Porqueras, Pedro & Shi, Shuping & Tan, David, 2022. "Gold as a financial instrument," Journal of Commodity Markets, Elsevier, vol. 27(C).
    18. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    19. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    20. Moreira, Afonso M. & Martins, Luis F., 2020. "A new mechanism for anticipating price exuberance," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 199-221.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:2:p:301-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.