IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/123060.html
   My bibliography  Save this paper

Weak-Identification-Robust Bootstrap Tests after Pretesting for Exogeneity

Author

Listed:
  • Doko Tchatoka, Firmin
  • Wang, Wenjie

Abstract

Pretesting for exogeneity has become a routine in many empirical applications involving instrumental variables (IVs) to decide whether the ordinary least squares (OLS) or the IV-based method is appropriate. Guggenberger (2010) shows that the second-stage t-test – based on the outcome of a Durbin-Wu-Hausman type pretest for exogeneity in the first stage – has extreme size distortion with asymptotic size equal to 1, even when the IVs are strong. In this paper, we propose a novel two-stage test procedure that switches between the OLS-based statistic and the weak-IV-robust statistic. Furthermore, we develop a size-corrected wild bootstrap approach, which combines certain wild bootstrap critical values along with an appropriate size-correction method. We establish uniform validity of this procedure under conditional heteroskedasticity in the sense that the resulting tests achieve correct asymptotic size no matter the identification is strong or weak. Monte Carlo simulations confirm our theoretical findings. In particular, our proposed method has remarkable power gains over the standard weak-identification-robust test.

Suggested Citation

  • Doko Tchatoka, Firmin & Wang, Wenjie, 2024. "Weak-Identification-Robust Bootstrap Tests after Pretesting for Exogeneity," MPRA Paper 123060, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:123060
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/123060/1/MPRA_paper_123060.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    DWH Pretest; Shrinkage; Weak Instruments; Asymptotic Size; Wild Bootstrap; Bonferroni-based Sizecorrection.;
    All these keywords.

    JEL classification:

    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:123060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.