Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference," Papers 2301.04527, arXiv.org, revised Feb 2023.
References listed on IDEAS
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023.
"Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust,"
Stata Journal, StataCorp LP, vol. 23(4), pages 942-982, December.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Papers 2205.03288, arXiv.org, revised Nov 2023.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Working Paper 1483, Economics Department, Queen's University.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021.
"Wild Bootstrap and Asymptotic Inference With Multiway Clustering,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
- James G. MacKinnon & Morten Ø. Nielsen & Matthew D. Webb, 2019. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," Working Paper 1415, Economics Department, Queen's University.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2020. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," CREATES Research Papers 2020-06, Department of Economics and Business Economics, Aarhus University.
- Guido W. Imbens & Michal Kolesár, 2016.
"Robust Standard Errors in Small Samples: Some Practical Advice,"
The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
- Guido W. Imbens & Michal Kolesar, 2012. "Robust Standard Errors in Small Samples: Some Practical Advice," NBER Working Papers 18478, National Bureau of Economic Research, Inc.
- repec:clg:wpaper:2013-20 is not listed on IDEAS
- James G. MacKinnon & Matthew D. Webb, 2018.
"The wild bootstrap for few (treated) clusters,"
Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135, June.
- James G. MacKinnon & Matthew D. Webb, 2017. "The Wild Bootstrap For Few (treated) Clusters," Working Paper 1364, Economics Department, Queen's University.
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008.
"Bootstrap-Based Improvements for Inference with Clustered Errors,"
The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
- Jonah B. Gelbach & Doug Miller & A. Colin Cameron, 2006. "Bootstrap-Based Improvements for Inference with Clustered Errors," Working Papers 128, University of California, Davis, Department of Economics.
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2007. "Bootstrap-Based Improvements for Inference with Clustered Errors," NBER Technical Working Papers 0344, National Bureau of Economic Research, Inc.
- Davidson, Russell & Flachaire, Emmanuel, 2008.
"The wild bootstrap, tamed at last,"
Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
- Davidson, R. & Flachaire, E., 1999. "The Wild Bootstrap, Tamed at Last," G.R.E.Q.A.M. 99a32, Universite Aix-Marseille III.
- Russell Davidson & Emmanuel Flachaire, 2008. "The wild bootstrap, tamed at last," Post-Print hal-00649250, HAL.
- Emmanuel Flachaire & Russell Davidson, 2001. "The Wild Bootstrap, Tamed At Last," Working Paper 1000, Economics Department, Queen's University.
- Emmanuel Flachaire, 2001. "The Wild Bootstrap, Tamed at Last," STICERD - Distributional Analysis Research Programme Papers 58, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Davidson, Russell & Flachaire, Emmanuel, 2001. "The wild bootstrap, tamed at last," LSE Research Online Documents on Economics 6560, London School of Economics and Political Science, LSE Library.
- Russell Davidson & Emmanuel Flachaire, 2000. "The Wild Bootstrap, Tamed at Last," Econometric Society World Congress 2000 Contributed Papers 1413, Econometric Society.
- Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, Wiley Blackwell, vol. 56(4), pages 1139-1203, September.
- Matthew D. Webb, 2023.
"Reworking wild bootstrap‐based inference for clustered errors,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
- Matthew D. Webb, 2014. "Reworking Wild Bootstrap Based Inference For Clustered Errors," Working Paper 1315, Economics Department, Queen's University.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Cluster-robust inference: A guide to empirical practice,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
- Matthew D. Webb & James MacKinnon & Morten Nielsen, 2021. "Cluster–robust inference: A guide to empirical practice," Economics Virtual Symposium 2021 6, Stata Users Group.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
- James MacKinnon & Morten Ørregaard Nielsen, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," CREATES Research Papers 2022-08, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
- Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019.
"Asymptotic theory and wild bootstrap inference with clustered errors,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2018. "Asymptotic Theory And Wild Bootstrap Inference With Clustered Errors," Working Paper 1399, Economics Department, Queen's University.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ørregaard Nielsen, 2019. "Asymptotic Theory and Wild Bootstrap Inference with Clustered Errors," CREATES Research Papers 2019-05, Department of Economics and Business Economics, Aarhus University.
- Davidson, Russell & MacKinnon, James G., 2006.
"The power of bootstrap and asymptotic tests,"
Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
- James G. MacKinnon & Russell Davidson, 2004. "The Power Of Bootstrap And Asymptotic Tests," Working Paper 1035, Economics Department, Queen's University.
- Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
- Mitra Akhtari & Diana Moreira & Laura Trucco, 2022.
"Political Turnover, Bureaucratic Turnover, and the Quality of Public Services,"
American Economic Review, American Economic Association, vol. 112(2), pages 442-493, February.
- Mitra Akhtari & Diana Moreira & Laura Trucco, 2016. "Political Turnover, Bureaucratic Turnover, and the Quality of Public Services," Working Paper 468671, Harvard University OpenScholar.
- Kline Patrick & Santos Andres, 2012.
"A Score Based Approach to Wild Bootstrap Inference,"
Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
- Patrick M. Kline & Andres Santos, 2010. "A Score Based Approach to Wild Bootstrap Inference," NBER Working Papers 16127, National Bureau of Economic Research, Inc.
- Brewer Mike & Crossley Thomas F. & Joyce Robert, 2018.
"Inference with Difference-in-Differences Revisited,"
Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-16, January.
- Brewer, Mike & Crossley, Thomas F. & Joyce, Robert, 2013. "Inference with Difference-in-Differences Revisited," IZA Discussion Papers 7742, Institute of Labor Economics (IZA).
- James G. MacKinnon & Matthew D. Webb, 2019.
"Wild Bootstrap Randomization Inference for Few Treated Clusters,"
Advances in Econometrics, in: The Econometrics of Complex Survey Data, volume 39, pages 61-85,
Emerald Group Publishing Limited.
- James G. MacKinnon & Matthew D. Webb, 2018. "Wild Bootstrap Randomization Inference For Few Treated Clusters," Working Paper 1404, Economics Department, Queen's University.
- Guo Xu, 2018. "The Costs of Patronage: Evidence from the British Empire," American Economic Review, American Economic Association, vol. 108(11), pages 3170-3198, November.
- MacKinnon, James G. & White, Halbert, 1985.
"Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties,"
Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
- James G. MacKinnon & Halbert White, 1983. "Some Heteroskedasticity Consistent Covariance Matrix Estimators with Improved Finite Sample Properties," Working Paper 537, Economics Department, Queen's University.
- Andrew V. Carter & Kevin T. Schnepel & Douglas G. Steigerwald, 2017. "Asymptotic Behavior of a t -Test Robust to Cluster Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 99(4), pages 698-709, July.
- Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
- David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019.
"Fast and wild: Bootstrap inference in Stata using boottest,"
Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
- David Roodman & James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen, 2018. "Fast And Wild: Bootstrap Inference In Stata Using Boottest," Working Paper 1406, Economics Department, Queen's University.
- James G. MacKinnon & Morten Ørregaard Nielsen & David Roodman & Matthew D. Webb, 2018. "Fast and Wild: Bootstrap Inference in Stata Using boottest," CREATES Research Papers 2018-34, Department of Economics and Business Economics, Aarhus University.
- Gianmaria Niccodemi & Tom Wansbeek, 2022. "A New Estimator for Standard Errors with Few Unbalanced Clusters," Econometrics, MDPI, vol. 10(1), pages 1-7, January.
- James E. Pustejovsky & Elizabeth Tipton, 2018. "Small-Sample Methods for Cluster-Robust Variance Estimation and Hypothesis Testing in Fixed Effects Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 672-683, October.
- James G. MacKinnon & Matthew D. Webb, 2017.
"Wild Bootstrap Inference for Wildly Different Cluster Sizes,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
- James G. MacKinnon & Matthew D. Webb, 2015. "Wild Bootstrap Inference For Wildly Different Cluster Sizes," Working Paper 1314, Economics Department, Queen's University.
- A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2021. "The Wild Bootstrap with a “Small†Number of “Large†Clusters," The Review of Economics and Statistics, MIT Press, vol. 103(2), pages 346-363, May.
- Xiaohong Chen & Norman R. Swanson (ed.), 2013. "Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis," Springer Books, Springer, edition 127, number 978-1-4614-1653-1, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Testing for the appropriate level of clustering in linear regression models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Testing for the appropriate level of clustering in linear regression models," Working Paper 1428, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Testing for the appropriate level of clustering in linear regression models," Papers 2301.04522, arXiv.org, revised Mar 2023.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Cluster-robust inference: A guide to empirical practice,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
- Matthew D. Webb & James MacKinnon & Morten Nielsen, 2021. "Cluster–robust inference: A guide to empirical practice," Economics Virtual Symposium 2021 6, Stata Users Group.
- James MacKinnon & Morten Ørregaard Nielsen, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," CREATES Research Papers 2022-08, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
- Daniel Auer & Michaela Slotwinski & Achim Ahrens & Dominik Hangartner & Selina Kurer & Stefanie Kurt & Alois Stutzer, 2024. "Social Assistance and Refugee Crime," CESifo Working Paper Series 11051, CESifo.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023.
"Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust,"
Stata Journal, StataCorp LP, vol. 23(4), pages 942-982, December.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Working Paper 1483, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Papers 2205.03288, arXiv.org, revised Nov 2023.
- Ha, Sangeun & Ma, Fangyuan & Žaldokas, Alminas, 2024. "Motivating collusion," Journal of Financial Economics, Elsevier, vol. 154(C).
- Rik Chakraborti & Gavin Roberts, 2023. "How price-gouging regulation undermined COVID-19 mitigation: county-level evidence of unintended consequences," Public Choice, Springer, vol. 196(1), pages 51-83, July.
- Richard K. Crump & Nikolay Gospodinov & Ignacio Lopez Gaffney, 2024. "A Jackknife Variance Estimator for Panel Regressions," Staff Reports 1133, Federal Reserve Bank of New York.
- Clarke, Dylan R. & Gold, Daniel E., 2024. "The effects of residential landlord–tenant laws: New evidence from Canadian reforms using census data," Journal of Urban Economics, Elsevier, vol. 140(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Cluster-robust inference: A guide to empirical practice,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
- Matthew D. Webb & James MacKinnon & Morten Nielsen, 2021. "Cluster–robust inference: A guide to empirical practice," Economics Virtual Symposium 2021 6, Stata Users Group.
- James MacKinnon & Morten Ørregaard Nielsen, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," CREATES Research Papers 2022-08, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Testing for the appropriate level of clustering in linear regression models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Testing for the appropriate level of clustering in linear regression models," Working Paper 1428, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Testing for the appropriate level of clustering in linear regression models," Papers 2301.04522, arXiv.org, revised Mar 2023.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023.
"Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust,"
Stata Journal, StataCorp LP, vol. 23(4), pages 942-982, December.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Working Paper 1483, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Papers 2205.03288, arXiv.org, revised Nov 2023.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021.
"Wild Bootstrap and Asymptotic Inference With Multiway Clustering,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
- James G. MacKinnon & Morten Ø. Nielsen & Matthew D. Webb, 2019. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," Working Paper 1415, Economics Department, Queen's University.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2020. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," CREATES Research Papers 2020-06, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2024.
"Cluster-robust jackknife and bootstrap inference for binary response models,"
Papers
2406.00650, arXiv.org.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2024. "Cluster-Robust Jackknife and Bootstrap Inference for Binary Response Models," Working Paper 1515, Economics Department, Queen's University.
- Matthew D. Webb, 2023.
"Reworking wild bootstrap‐based inference for clustered errors,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
- Matthew D. Webb, 2014. "Reworking Wild Bootstrap Based Inference For Clustered Errors," Working Paper 1315, Economics Department, Queen's University.
- James G. MacKinnon, 2019.
"How cluster‐robust inference is changing applied econometrics,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
- James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 851-881, August.
- James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Working Paper 1413, Economics Department, Queen's University.
- Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019.
"Asymptotic theory and wild bootstrap inference with clustered errors,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2018. "Asymptotic Theory And Wild Bootstrap Inference With Clustered Errors," Working Paper 1399, Economics Department, Queen's University.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ørregaard Nielsen, 2019. "Asymptotic Theory and Wild Bootstrap Inference with Clustered Errors," CREATES Research Papers 2019-05, Department of Economics and Business Economics, Aarhus University.
- MacKinnon, James G., 2023.
"Fast cluster bootstrap methods for linear regression models,"
Econometrics and Statistics, Elsevier, vol. 26(C), pages 52-71.
- James G. MacKinnon, 2021. "Fast cluster bootstrap methods for linear regression models," Working Paper 1465, Economics Department, Queen's University.
- James G. MacKinnon & Matthew D. Webb, 2017. "Pitfalls When Estimating Treatment Effects Using Clustered Data," Working Paper 1387, Economics Department, Queen's University.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2017. "Validity Of Wild Bootstrap Inference With Clustered Errors," Working Paper 1383, Economics Department, Queen's University.
- James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen, 2017. "Bootstrap And Asymptotic Inference With Multiway Clustering," Working Paper 1386, Economics Department, Queen's University.
- David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019.
"Fast and wild: Bootstrap inference in Stata using boottest,"
Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
- James G. MacKinnon & Morten Ørregaard Nielsen & David Roodman & Matthew D. Webb, 2018. "Fast and Wild: Bootstrap Inference in Stata Using boottest," CREATES Research Papers 2018-34, Department of Economics and Business Economics, Aarhus University.
- David Roodman & James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen, 2018. "Fast And Wild: Bootstrap Inference In Stata Using Boottest," Working Paper 1406, Economics Department, Queen's University.
- Hansen, Bruce E. & Lee, Seojeong, 2019.
"Asymptotic theory for clustered samples,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
- Bruce E. Hansen & Seojeong Jay Lee, 2017. "Asymptotic Theory for Clustered Samples," Discussion Papers 2017-18, School of Economics, The University of New South Wales.
- Bruce E. Hansen & Seojeong Lee, 2019. "Asymptotic Theory for Clustered Samples," Papers 1902.01497, arXiv.org.
- Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018.
"The wild bootstrap with a "small" number of "large" clusters,"
CeMMAP working papers
CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2019. "The Wild Bootstrap with a Small Number of Large Clusters," CeMMAP working papers CWP40/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- MacKinnon, James G., 2023.
"Using large samples in econometrics,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 922-926.
- James G. MacKinnon, 2022. "Using Large Samples in Econometrics," Working Paper 1482, Economics Department, Queen's University.
- MacKinnon, James G. & Webb, Matthew D., 2020.
"Randomization inference for difference-in-differences with few treated clusters,"
Journal of Econometrics, Elsevier, vol. 218(2), pages 435-450.
- James G. MacKinnon & Matthew D. Webb, 2016. "Randomization Inference for Difference-in-Differences with Few Treated Clusters," Carleton Economic Papers 16-11, Carleton University, Department of Economics.
- James G. MacKinnon & Matthew D. Webb, 2019. "Randomization Inference For Difference-in-differences With Few Treated Clusters," Working Paper 1355, Economics Department, Queen's University.
- Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
More about this item
Keywords
bootstrap; clustered data; grouped data; cluster-robust variance estimator; CRVE; cluster sizes; wild cluster bootstrap;All these keywords.
JEL classification:
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2022-04-18 (Econometrics)
- NEP-ORE-2022-04-18 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1485. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.