IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/110899.html
   My bibliography  Save this paper

Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data

Author

Listed:
  • Doko Tchatoka, Firmin
  • Wang, Wenjie

Abstract

Pretesting for exogeneity has become a routine in many empirical applications involving instrumental variables to decide whether the ordinary least squares or the two-stage least squares (2SLS) method is appropriate. Guggenberger (2010) shows that the second-stage t-test – based on the outcome of a Durbin-Wu-Hausman type pretest for exogeneity in the first stage – has extreme size distortion with asymptotic size equal to 1 when the standard asymptotic critical values are used. In this paper, we first show that both conditional and unconditional on the data, the standard wild bootstrap procedures are invalid for the two-stage testing and a closely related shrinkage method, and therefore are not viable solutions to such size-distortion problem. Then, we propose a novel size-corrected wild bootstrap approach, which combines certain wild bootstrap critical values along with an appropriate size-correction method. We establish uniform validity of this procedure under either conditional heteroskedasticity or clustering in the sense that the resulting tests achieve correct asymptotic size. Monte Carlo simulations confirm our theoretical findings. In particular, our proposed method has remarkable power gains over the standard 2SLS-based t-test in many settings, especially when the identification is not strong.

Suggested Citation

  • Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:110899
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/110899/19/MPRA_paper_110898.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/119483/23/MPRA_paper_119483.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Firmin Doko Tchatoka, 2015. "On bootstrap validity for specification tests with weak instruments," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 137-146, February.
    2. Giuseppe Cavaliere & Iliyan Georgiev, 2020. "Inference Under Random Limit Bootstrap Measures," Econometrica, Econometric Society, vol. 88(6), pages 2547-2574, November.
    3. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    4. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    5. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    6. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    7. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    8. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    9. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    10. Doko Tchatoka, Firmin Sabro & Dufour, Jean-Marie, 2008. "Instrument endogeneity and identification-robust tests: some analytical results," MPRA Paper 29613, University Library of Munich, Germany.
    11. Patrik Guggenberger & Gitanjali Kumar, 2012. "On the size distortion of tests after an overidentifying restrictions pretest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1138-1160, November.
    12. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    13. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, vol. 158(2), pages 285-305, October.
    14. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    15. Angrist, Joshua D & Evans, William N, 1998. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," American Economic Review, American Economic Association, vol. 88(3), pages 450-477, June.
    16. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    17. Wang, Wenjie, 2020. "On the inconsistency of nonparametric bootstraps for the subvector Anderson–Rubin test," Economics Letters, Elsevier, vol. 191(C).
    18. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05c, School of Economics, The University of New South Wales.
    19. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    20. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    21. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    22. Kabaila, Paul, 1995. "The Effect of Model Selection on Confidence Regions and Prediction Regions," Econometric Theory, Cambridge University Press, vol. 11(3), pages 537-549, June.
    23. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    24. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 533-575.
    25. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(1), pages 60-68, February.
    26. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    27. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    28. Bruce E. Hansen, 2017. "Stein-like 2SLS estimator," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 840-852, October.
    29. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(2), pages 387-421, April.
    30. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    31. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    32. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    33. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    34. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    35. Adam McCloskey, 2020. "Asymptotically Uniform Tests After Consistent Model Selection in the Linear Regression Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 810-825, October.
    36. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    37. Sukjin Han & Adam McCloskey, 2019. "Estimation and inference with a (nearly) singular Jacobian," Quantitative Economics, Econometric Society, vol. 10(3), pages 1019-1068, July.
    38. Maasoumi, Esfandiar, 1978. "A Modified Stein-like Estimator for the Reduced Form Coefficients of Simultaneous Equations," Econometrica, Econometric Society, vol. 46(3), pages 695-703, May.
    39. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(2), pages 426-468, April.
    40. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    41. Keith Finlay & Leandro M. Magnusson, 2019. "Two applications of wild bootstrap methods to improve inference in cluster‐IV models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 911-933, September.
    42. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators," Journal of Econometrics, Elsevier, vol. 152(1), pages 19-27, September.
    43. Guggenberger, Patrik, 2010. "The impact of a Hausman pretest on the size of a hypothesis test: The panel data case," Journal of Econometrics, Elsevier, vol. 156(2), pages 337-343, June.
    44. Guggenberger, Patrik, 2010. "The Impact Of A Hausman Pretest On The Asymptotic Size Of A Hypothesis Test," Econometric Theory, Cambridge University Press, vol. 26(2), pages 369-382, April.
    45. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    46. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naoya Sueishi, 2022. "A Misuse of Specification Tests," Papers 2211.11915, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    2. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    3. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    4. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    5. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    6. MacKinnon, James G., 2023. "Fast cluster bootstrap methods for linear regression models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 52-71.
    7. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    8. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    9. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    10. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    11. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    12. Wang, Wenjie, 2020. "On Bootstrap Validity for the Test of Overidentifying Restrictions with Many Instruments and Heteroskedasticity," MPRA Paper 104858, University Library of Munich, Germany.
    13. Angrist, Joshua & Kolesár, Michal, 2024. "One instrument to rule them all: The bias and coverage of just-ID IV," Journal of Econometrics, Elsevier, vol. 240(2).
    14. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    15. James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 851-881, August.
    16. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust," Stata Journal, StataCorp LP, vol. 23(4), pages 942-982, December.
    18. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Wild Bootstrap and Asymptotic Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
    19. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    20. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.

    More about this item

    Keywords

    DWH Pretest; Shrinkage; Instrumental Variable; Asymptotic Size; Wild Bootstrap; Bonferroni-based Size-correction; Clustering.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:110899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.