بررسی کاربردهای دادهکاوی در مدیریت مشتریان شرکتهای هواپیمایی
[Data mining for managing customers of airline companies]
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nassiri, Habibollah & Rezaei, Ali, 2012. "Air itinerary choice in a low-frequency market: A decision rule approach," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 34-37.
- Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
- Yanfang Zhang & Mushang Lee, 2019. "A Hybrid Model for Addressing the Relationship between Financial Performance and Sustainable Development," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
- Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
- Jiang, Cuiqing & Lyu, Ximei & Yuan, Yufei & Wang, Zhao & Ding, Yong, 2022. "Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1086-1099.
- Guanping Zhou, 2019. "Financial distress prevention in China: Does gender of board of directors matter?," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(6), pages 1-8.
- ElBannan, Mona A., 2021. "On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries," Emerging Markets Review, Elsevier, vol. 47(C).
- Yong Sun & Hui Liu & Jiwei Liu & Mingyu Sun & Qun Li, 2023. "Analysis of Factors Influencing the Corporate Performance of Listed Companies in China’s Agriculture and Forestry Sector Based on a Panel Threshold Model," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
- Ding, Shusheng & Cui, Tianxiang & Bellotti, Anthony Graham & Abedin, Mohammad Zoynul & Lucey, Brian, 2023. "The role of feature importance in predicting corporate financial distress in pre and post COVID periods: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
- Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
- Ayoola Tajudeen John & Obokoh Lawrence Ogechukwu, 2018. "Corporate Governance and Financial Distress in the Banking Industry: Nigerian Experience," Journal of Economics and Behavioral Studies, AMH International, vol. 10(1), pages 182-193.
- Yue Qiu & Jiabei He & Zhensong Chen & Yinhong Yao & Yi Qu, 2024. "A novel semisupervised learning method with textual information for financial distress prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2478-2494, November.
- Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
- Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
- Chi, Guotai & Dong, Bingjie & Zhou, Ying & Jin, Peng, 2024. "Long-horizon predictions of credit default with inconsistent customers," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- repec:prg:jnlpep:v:preprint:id:664:p:1-17 is not listed on IDEAS
- Lifang Zhang & Mohammad Zoynul Abedin & Zhenkun Liu, 2024. "Incorporating media news to predict financial distress: Case study on Chinese listed companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1374-1398, August.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Guo, Hongfeng & Xia, Shengxiang & An, Qiguang & Zhang, Xin & Sun, Weihua & Zhao, Xinyao, 2020. "Empirical study of financial crises based on topological data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
More about this item
Keywords
data mining application; airline industry; DRSA technique; customer relationship management.;All these keywords.
JEL classification:
- N7 - Economic History - - Economic History: Transport, International and Domestic Trade, Energy, and Other Services
- O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:114737. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.