IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i11p160-d972099.html
   My bibliography  Save this article

Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam

Author

Listed:
  • Kim Long Tran

    (Faculty of Banking, Ho Chi Minh University of Banking, No. 36 Ton That Dam Street, Nguyen Thai Binh Ward, District 1, Ho Chi Minh City 700000, Vietnam)

  • Hoang Anh Le

    (Institute for Research Science and Banking Technology, Ho Chi Minh University of Banking, No. 36 Ton That Dam Street, Nguyen Thai Binh Ward, District 1, Ho Chi Minh City 700000, Vietnam)

  • Thanh Hien Nguyen

    (Department of Economic Mathematics, Ho Chi Minh University of Banking, No. 36 Ton That Dam Street, Nguyen Thai Binh Ward, District 1, Ho Chi Minh City 700000, Vietnam)

  • Duc Trung Nguyen

    (Faculty of Banking, Ho Chi Minh University of Banking, No. 36 Ton That Dam Street, Nguyen Thai Binh Ward, District 1, Ho Chi Minh City 700000, Vietnam)

Abstract

The past decade has witnessed the rapid development of machine learning applied in economics and finance. Recent evidence suggests that machine learning models have produced superior results to traditional statistical models and have become the driving force for dramatic improvement in the financial industry. However, a much-debated question is whether the prediction results from black box machine learning models can be interpreted. In this study, we compared the predictive power of machine learning algorithms and applied SHAP values to interpret the prediction results on the dataset of listed companies in Vietnam from 2010 to 2021. The results showed that the extreme gradient boosting and random forest models outperformed other models. In addition, based on Shapley values, we also found that long-term debts to equity, enterprise value to revenues, account payable to equity, and diluted EPS had greatly influenced the outputs. In terms of practical contributions, the study helps credit rating companies have a new method for predicting the possibility of default of bond issuers in the market. The study also provides an early warning tool for policymakers about the risks of public companies in order to develop measures to protect retail investors against the risk of bond default.

Suggested Citation

  • Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:11:p:160-:d:972099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/11/160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/11/160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    2. Bracke, Philippe & Datta, Anupam & Jung, Carsten & Sen, Shayak, 2019. "Machine learning explainability in finance: an application to default risk analysis," Bank of England working papers 816, Bank of England.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    5. Branka Hadji Misheva & Joerg Osterrieder & Ali Hirsa & Onkar Kulkarni & Stephen Fung Lin, 2021. "Explainable AI in Credit Risk Management," Papers 2103.00949, arXiv.org.
    6. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    7. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    8. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    9. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    10. Shiyi Chen & W. K. Hardle & R. A. Moro, 2011. "Modeling default risk with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 135-154.
    11. Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
    12. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    13. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pejman Peykani & Mostafa Sargolzaei & Mohammad Hashem Botshekan & Camelia Oprean-Stan & Amir Takaloo, 2023. "Optimization of Asset and Liability Management of Banks with Minimum Possible Changes," Mathematics, MDPI, vol. 11(12), pages 1-24, June.
    2. Deng, Shangkun & Luo, Qunfang & Zhu, Yingke & Ning, Hong & Shimada, Tatsuro, 2024. "Financial risk forewarning with an interpretable ensemble learning approach: An empirical analysis based on Chinese listed companies," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).
    3. Liu, Yiting & Baals, Lennart John & Osterrieder, Jörg & Hadji-Misheva, Branka, 2024. "Network centrality and credit risk: A comprehensive analysis of peer-to-peer lending dynamics," Finance Research Letters, Elsevier, vol. 63(C).
    4. Thiago Conte & Roberto Oliveira, 2024. "Comparative Analysis between Intelligent Machine Committees and Hybrid Deep Learning with Genetic Algorithms in Energy Sector Forecasting: A Case Study on Electricity Price and Wind Speed in the Brazi," Energies, MDPI, vol. 17(4), pages 1-31, February.
    5. Soumya Ranjan Sethi & Dushyant Ashok Mahadik & Rajkiran V. Bilolikar, 2024. "Exploring Trends and Advancements in Financial Distress Prediction Research: A Bibliometric Study," International Journal of Economics and Financial Issues, Econjournals, vol. 14(1), pages 164-179, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    3. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    4. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    5. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.
    6. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    7. Jiaming Liu & Chong Wu, 2017. "Dynamic forecasting of financial distress: the hybrid use of incremental bagging and genetic algorithm—empirical study of Chinese listed corporations," Risk Management, Palgrave Macmillan, vol. 19(1), pages 32-52, February.
    8. Lenka Papíková & Mário Papík, 2022. "Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 254-281, October.
    9. Sun, Xiaojun & Lei, Yalin, 2021. "Research on financial early warning of mining listed companies based on BP neural network model," Resources Policy, Elsevier, vol. 73(C).
    10. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    11. Jiaming Liu & Chengzhang Li & Peng Ouyang & Jiajia Liu & Chong Wu, 2023. "Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1112-1137, August.
    12. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2022. "Does board committee independence affect financial distress likelihood? A comparison of China with the UK," Asia Pacific Journal of Management, Springer, vol. 39(2), pages 723-761, June.
    13. Khaled Halteh & Kuldeep Kumar & Adrian Gepp, 2018. "Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk," Risks, MDPI, vol. 6(2), pages 1-13, May.
    14. Jie Sun & Mengjie Zhou & Wenguo Ai & Hui Li, 2019. "Dynamic prediction of relative financial distress based on imbalanced data stream: from the view of one industry," Risk Management, Palgrave Macmillan, vol. 21(4), pages 215-242, December.
    15. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    16. Alberto Tron & Maurizio Dallocchio & Salvatore Ferri & Federico Colantoni, 2023. "Corporate governance and financial distress: lessons learned from an unconventional approach," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 425-456, June.
    17. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    18. Härdle, Wolfgang Karl & Prastyo, Dedy Dwi, 2013. "Default risk calculation based on predictor selection for the Southeast Asian industry," SFB 649 Discussion Papers 2013-037, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Paras Arora & Suman Saurabh, 2022. "Predicting distress: a post Insolvency and Bankruptcy Code 2016 analysis," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(3), pages 604-622, July.
    20. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:11:p:160-:d:972099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.