IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/105481.html
   My bibliography  Save this paper

An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels

Author

Listed:
  • Abajian, Alexander
  • Pretnar, Nick

Abstract

Residential solar panels in the United States (U.S.) are inefficiently distributed in terms of optimizing solar-electrical production. Controlling for local solar electricity generation potential (insolation), the residential solar share of electrical consumption is relatively higher in cloudier locales like the Pacific Northwest and Northeast than it is in sunnier areas like the Western U.S. and Florida. Rebates designed to increase residential solar adoption in places like Florida and Texas with relatively low solar-electrical shares are ineffective and may lead to net decreases in the residential solar share if housing and electrical consumption are complementary. This is because electrical consumption increases faster in response to a decline in effective residential solar prices than actual demand for panels themselves, thus driving down the solar share despite additional installations. Through the lens of a county-level structural model of demand for housing, electricity, and solar panels, we find that this phenomenon is especially prevalent in locales with high demand for cooling services (e.g., air conditioning, refrigeration, etc.) due to high numbers of cooling degree days. Inability to effectively store solar-produced electricity may be to blame. Our results thus suggest that future policies should subsidize nascent battery technologies in place of direct solar-panel installation rebates if the goal is to increase the residential solar share of electrical consumption.

Suggested Citation

  • Abajian, Alexander & Pretnar, Nick, 2021. "An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels," MPRA Paper 105481, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:105481
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/105481/1/MPRA_paper_105481.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imelda & Matthias Fripp & Michael J. Roberts, 2018. "Variable Pricing and the Cost of Renewable Energy," NBER Working Papers 24712, National Bureau of Economic Research, Inc.
    2. Duncan S. Callaway & Meredith Fowlie & Gavin McCormick, 2018. "Location, Location, Location: The Variable Value of Renewable Energy and Demand-Side Efficiency Resources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 39-75.
    3. Jonathan E. Hughes & Molly Podolefsky, 2015. "Getting Green with Solar Subsidies: Evidence from the California Solar Initiative," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 235-275.
    4. Severin Borenstein & Lucas W. Davis, 2016. "The Distributional Effects of US Clean Energy Tax Credits," Tax Policy and the Economy, University of Chicago Press, vol. 30(1), pages 191-234.
    5. Geoffrey Heal, 2022. "Economic Aspects of the Energy Transition," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 5-21, September.
    6. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
    7. Flowers, Mallory E. & Smith, Matthew K. & Parsekian, Ara W. & Boyuk, Dmitriy S. & McGrath, Jenna K. & Yates, Luke, 2016. "Climate impacts on the cost of solar energy," Energy Policy, Elsevier, vol. 94(C), pages 264-273.
    8. Imelda & Matthias Fripp & Michael J. Roberts, 2018. "Variable Pricing and the Cost of Renewable Energy," Working Papers 2018-2, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    9. Frank A. Wolak, 2018. "The Evidence from California on the Economic Impact of Inefficient Distribution Network Pricing," NBER Working Papers 25087, National Bureau of Economic Research, Inc.
    10. Severin Borenstein, 2017. "Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives, and Rebates," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 85-122.
    11. Heng, Yan & Lu, Chao-Lin & Yu, Luqing & Gao, Zhifeng, 2020. "The heterogeneous preferences for solar energy policies among US households," Energy Policy, Elsevier, vol. 137(C).
    12. Steven E. Sexton & A. Justin Kirkpatrick & Robert Harris & Nicholas Z. Muller, 2018. "Heterogeneous Environmental and Grid Benefits from Rooftop Solar and the Costs of Inefficient Siting Decisions," NBER Working Papers 25241, National Bureau of Economic Research, Inc.
    13. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    14. Nomura, Noboru & Akai, Makoto, 2004. "Willingness to pay for green electricity in Japan as estimated through contingent valuation method," Applied Energy, Elsevier, vol. 78(4), pages 453-463, August.
    15. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    16. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    17. Yoo, Seung-Hoon & Kwak, So-Yoon, 2009. "Willingness to pay for green electricity in Korea: A contingent valuation study," Energy Policy, Elsevier, vol. 37(12), pages 5408-5416, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Colas & Emmett Saulnier, 2023. "Optimal Subsidies for Residential Solar," CESifo Working Paper Series 10446, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abajian, Alexander & Pretnar, Nick, 2023. "Subsidies for Close Substitutes: Evidence from Residential Solar Systems," MPRA Paper 118171, University Library of Munich, Germany.
    2. Sébastien Houde & Wenjun Wang, 2022. "The Incidence of the U.S.-China Solar Trade War," CER-ETH Economics working paper series 22/372, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    3. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    4. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    5. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Axel Gautier & Julien Jacqmin, 2020. "PV adoption: the role of distribution tariffs under net metering," Journal of Regulatory Economics, Springer, vol. 57(1), pages 53-73, February.
    7. Yu, Ying & Yamaguchi, Kensuke & Thuy, Truong Dang & Kittner, Noah, 2022. "Will the public in emerging economies support renewable energy? Evidence from Ho Chi Minh City, Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Sun, Bixuan & Sankar, Ashwini, 2022. "The changing effectiveness of financial incentives: Theory and evidence from residential solar rebate programs in California," Energy Policy, Elsevier, vol. 162(C).
    9. Germeshausen, Robert, 2016. "Effects of Attribute-Based Regulation on Technology Adoption - The Case of Feed-In Tariffs for Solar Photovoltaic," VfS Annual Conference 2016 (Augsburg): Demographic Change 145712, Verein für Socialpolitik / German Economic Association.
    10. Hancevic, Pedro I. & Sandoval, Hector H., 2023. "Solar panel adoption among Mexican small and medium-sized commercial and service businesses," Energy Economics, Elsevier, vol. 126(C).
    11. O'Shaughnessy, Eric, 2022. "How policy has shaped the emerging solar photovoltaic installation industry," Energy Policy, Elsevier, vol. 163(C).
    12. Pedro I. Hancevic & Hector H. Sandoval, 2023. "Solar Panel Adoption in SMEs in Emerging Countries," Working Papers 222, Red Nacional de Investigadores en Economía (RedNIE).
    13. Fabian Feger & Nicola Pavanini & Doina Radulescu, 2022. "Welfare and Redistribution in Residential Electricity Markets with Solar Power," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3267-3302.
    14. McRae, Shaun D. & Wolak, Frank A., 2021. "Retail pricing in Colombia to support the efficient deployment of distributed generation and electric stoves," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    15. Brown, David P., 2022. "Socioeconomic and demographic disparities in residential battery storage adoption: Evidence from California," Energy Policy, Elsevier, vol. 164(C).
    16. O'Shaughnessy, Eric, 2022. "Rooftop solar incentives remain effective for low- and moderate-income adoption," Energy Policy, Elsevier, vol. 163(C).
    17. Fabra, Natalia & Reguant, Mar, 2024. "The energy transition: A balancing act," Resource and Energy Economics, Elsevier, vol. 76(C).
    18. Li, Yumin, 2018. "Incentive pass-through in the California Solar Initiative – An analysis based on third-party contracts," Energy Policy, Elsevier, vol. 121(C), pages 534-541.
    19. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    20. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).

    More about this item

    Keywords

    subsidies; environmental subsidy; environmental economics; electricity; energy utilities; renewable energy; solar energy; neighborhood characteristics; diffu- sion; spatial pricing; industrial geography;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • R23 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Regional Migration; Regional Labor Markets; Population

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:105481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.