IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/841.html
   My bibliography  Save this paper

Marked and Weighted Empirical Processes of Residuals with Applications to Robust Regressions

Author

Listed:
  • Vanessa Berenguer Rico
  • Bent Nielsen

Abstract

A new class of marked and weighted empirical processes of residuals is introduced. The framework is general enough to accommodate both stationary and non-stationary regressions as well as a wide class of estimation procedures with applications in misspecification testing and robust statistics. Two applications are presented. First, we analyze the relationship between truncated moments and linear statistical functionals of residuals. In particular, we show that the asymptotic behaviour of these functionals, expressed as integrals with respect to their empirical distribution functions, can be easily analyzed given the main theorems of the paper. In our context the integrands can be unbounded provided that the underlying distribution meets certain moment conditions. A general first order asymptotic approximation of the statistical functionals is derived and then applied to some cases of interest. Second, the consequences of using the standard cumulant based normality test for robust regressions are analyzed. We show that the rescaling of the moment based statistic is case dependent, i.e., it depends on the truncation and the estimation method being used. Hence, using the standard least squares normalizing constants in robust regressions will lead to incorrect inferences. However, if appropriate normalizations, which we derive, are used then the test statistic is asymptotically chi-square.

Suggested Citation

  • Vanessa Berenguer Rico & Bent Nielsen, 2017. "Marked and Weighted Empirical Processes of Residuals with Applications to Robust Regressions," Economics Series Working Papers 841, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:841
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
    2. Søren Johansen & Bent Nielsen, 2016. "Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 374-381, June.
    3. Juan Carlos Escanciano, 2004. "Model Checks Using Residual Marked Empirical Processes," Faculty Working Papers 13/04, School of Economics and Business Administration, University of Navarra.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," CREATES Research Papers 2019-15, Department of Economics and Business Economics, Aarhus University.
    2. David H. Bernstein & Bent Nielsen, 2019. "Asymptotic Theory for Cointegration Analysis When the Cointegration Rank Is Deficient," Econometrics, MDPI, vol. 7(1), pages 1-24, January.
    3. Takamitsu Kurita & Bent Nielsen, 2019. "Partial Cointegrated Vector Autoregressive Models with Structural Breaks in Deterministic Terms," Econometrics, MDPI, vol. 7(4), pages 1-35, October.
    4. Xiyu Jiao & Felix Pretis, 2022. "Testing the Presence of Outliers in Regression Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1452-1484, December.
    5. Takamitsu Kurita & B. Nielsen, 2018. "Partial cointegrated vector autoregressive models with structural breaks in deterministic terms," Economics Papers 2018-W03, Economics Group, Nuffield College, University of Oxford.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    2. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    3. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    4. Baiardi, Donatella & Morana, Claudio, 2021. "Climate change awareness: Empirical evidence for the European Union," Energy Economics, Elsevier, vol. 96(C).
    5. Vanessa Berenguer-Rico & Soeren Johansen & Bent Nielsen, 2019. "Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals," Discussion Papers 19-09, University of Copenhagen. Department of Economics.
    6. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    7. David H. Bernstein & Andrew B. Martinez, 2021. "Jointly Modeling Male and Female Labor Participation and Unemployment," Econometrics, MDPI, vol. 9(4), pages 1-14, December.
    8. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    9. Emmanuel Flachaire & Sullivan Hué & Sébastien Laurent & Gilles Hacheme, 2024. "Interpretable Machine Learning Using Partial Linear Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 519-540, June.
    10. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    11. Anthony C. Atkinson & Andrea Cerioli & Marco Riani, 2016. "Discussion of ‘Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models’ by Johansen and Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 349-352, June.
    12. Felix Pretis, 2022. "Does a Carbon Tax Reduce CO2 Emissions? Evidence from British Columbia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 115-144, September.
    13. Kaufmann, Robert K., 2023. "Energy price volatility affects decisions to purchase energy using capital: Motor vehicles," Energy Economics, Elsevier, vol. 126(C).
    14. Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
    15. Atkinson, Anthony C. & Riani, Marco & Torti, Francesca, 2016. "Robust methods for heteroskedastic regression," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 209-222.
    16. David F. Hendry, 2024. "A Brief History of General‐to‐specific Modelling," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 1-20, February.
    17. Antoni Espasa & Eva Senra, 2017. "Twenty-Two Years of Inflation Assessment and Forecasting Experience at the Bulletin of EU & US Inflation and Macroeconomic Analysis," Econometrics, MDPI, vol. 5(4), pages 1-28, October.
    18. Neil R. Ericsson & Mohammed H. I. Dore & Hassan Butt, 2022. "Detecting and Quantifying Structural Breaks in Climate," Econometrics, MDPI, vol. 10(4), pages 1-27, November.
    19. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    20. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.