Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Vanessa Berenguer-Rico & Soeren Johansen & Bent Nielsen, 2019. "Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals," Discussion Papers 19-09, University of Copenhagen. Department of Economics.
- Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals," Economics Papers 2019-W04, Economics Group, Nuffield College, University of Oxford.
- Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals," CREATES Research Papers 2019-12, Department of Economics and Business Economics, Aarhus University.
References listed on IDEAS
- Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
- Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019.
"The analysis of marked and weighted empirical processes of estimated residuals,"
Economics Papers
2019-W03, Economics Group, Nuffield College, University of Oxford.
- Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "The analysis of marked and weighted empirical processes of estimated residuals," CREATES Research Papers 2019-06, Department of Economics and Business Economics, Aarhus University.
- Vanessa Berenguer-Rico & Soeren Johansen & Bent Nielsen, 2019. "The analysis of marked and weighted empirical processes of estimated residuals," Discussion Papers 19-05, University of Copenhagen. Department of Economics.
- Vanessa Berenguer Rico & Bent Nielsen & Søren Johansen, 2019. "The analysis of marked and weighted empirical processes of estimated residuals," Economics Series Working Papers 870, University of Oxford, Department of Economics.
- David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Søren Johansen & Bent Nielsen, 2016. "Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 374-381, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019.
"Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood,"
CREATES Research Papers
2019-15, Department of Economics and Business Economics, Aarhus University.
- Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," Economics Papers 2019-W05, Economics Group, Nuffield College, University of Oxford.
- Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," Discussion Papers 19-11, University of Copenhagen. Department of Economics.
- Vanessa Berenguer Rico & Bent Nielsen & Søren Johansen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," Economics Series Working Papers 879, University of Oxford, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiyu Jiao & Felix Pretis, 2022. "Testing the Presence of Outliers in Regression Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1452-1484, December.
- Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
- Andrew B. Martinez, 2020.
"Forecast Accuracy Matters for Hurricane Damage,"
Econometrics, MDPI, vol. 8(2), pages 1-24, May.
- Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damages," Working Papers 2020-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023.
"Robust Discovery of Regression Models,"
Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Robust Discovery of Regression Models," Economics Papers 2020-W04, Economics Group, Nuffield College, University of Oxford.
- Ericsson, Neil R., 2016.
"Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," Working Papers 2015-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," International Finance Discussion Papers 1152, Board of Governors of the Federal Reserve System (U.S.).
- Ericsson, Neil R., 2017.
"How biased are U.S. government forecasts of the federal debt?,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
- Neil R. Ericsson, 2017. "How Biased Are U.S. Government Forecasts of the Federal Debt?," Working Papers 2017-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Neil R. Ericsson, 2017. "How Biased Are U.S. Government Forecasts of the Federal Debt?," International Finance Discussion Papers 1189, Board of Governors of the Federal Reserve System (U.S.).
- Jennifer Castle & David Hendry, 2016. "Policy Analysis, Forediction, and Forecast Failure," Economics Series Working Papers 809, University of Oxford, Department of Economics.
- David F. Hendry & Grayham E. Mizon, 2016.
"Improving the teaching of econometrics,"
Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
- David Hendry & Grayham E. Mizon, 2016. "Improving the Teaching of Econometrics," Economics Series Working Papers 785, University of Oxford, Department of Economics.
- Hendry, David F., 2018.
"Deciding between alternative approaches in macroeconomics,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
- David Hendry, 2016. "Deciding Between Alternative Approaches In Macroeconomics," Economics Series Working Papers 778, University of Oxford, Department of Economics.
- Ericsson, Neil R., 2017. "Interpreting estimates of forecast bias," International Journal of Forecasting, Elsevier, vol. 33(2), pages 563-568.
- Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, vol. 5(3), pages 1-27, September.
- Vassilios Bazinas & Bent Nielsen, 2022.
"Causal Transmission in Reduced-Form Models,"
Econometrics, MDPI, vol. 10(2), pages 1-25, March.
- Vassili Bazinas & Bent Nielsen, 2015. "Causal transmission in reduced-form models," Economics Papers 2015-W07, Economics Group, Nuffield College, University of Oxford.
- Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
- Baiardi, Donatella & Morana, Claudio, 2021.
"Climate change awareness: Empirical evidence for the European Union,"
Energy Economics, Elsevier, vol. 96(C).
- Donatella Baiardi & Claudio Morana, 2020. "Climate change awareness: Empirical evidence for the European Union," Working Papers 426, University of Milano-Bicocca, Department of Economics, revised Feb 2021.
- Donatella Baiardi & Claudio Morana, 2020. "Climate change awareness: Empirical evidence for the European Union," Working Paper series 20-15, Rimini Centre for Economic Analysis, revised Nov 2020.
- David H. Bernstein & Andrew B. Martinez, 2021.
"Jointly Modeling Male and Female Labor Participation and Unemployment,"
Econometrics, MDPI, vol. 9(4), pages 1-14, December.
- David H. Bernstein & Andrew B. Martinez, 2021. "Jointly Modeling Male and Female Labor Participation and Unemployment," Working Papers 2021-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Anthony C. Atkinson & Andrea Cerioli & Marco Riani, 2016.
"Discussion of ‘Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models’ by Johansen and Nielsen,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 349-352, June.
- Atkinson, Anthony C. & Cerioli, Andrea & Riani, Marco, 2016. "Discussion of “asymptotic theory of outlier detection algorithms for linear time series regression models” by Johansen and Nielsen," LSE Research Online Documents on Economics 66724, London School of Economics and Political Science, LSE Library.
- Felix Pretis, 2022. "Does a Carbon Tax Reduce CO2 Emissions? Evidence from British Columbia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 115-144, September.
- Kaufmann, Robert K., 2023. "Energy price volatility affects decisions to purchase energy using capital: Motor vehicles," Energy Economics, Elsevier, vol. 126(C).
- Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
- Atkinson, Anthony C. & Riani, Marco & Torti, Francesca, 2016. "Robust methods for heteroskedastic regression," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 209-222.
More about this item
Keywords
1-step Huber skip; Asymptotic theory; Empirical processes; Gauge; Marked and Weighted Empirical processes; Non-stationarity; Robust Statistics; Sta-tionarity;All these keywords.
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ORE-2019-09-23 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:871. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.