IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/x5vmz_v1.html
   My bibliography  Save this paper

Are Matching Funds for Smallholder Irrigation Money Well Spent?

Author

Listed:
  • Mullally, Conner
  • Chakravarty, Shourish

Abstract

Groundwater irrigation can dramatically affect agricultural production and productivity. Despite its potential as an agricultural development tool, little credible evidence exists for the impacts of groundwater development on smallholder agriculture. We add to the evidence on the benefits of irrigation investments for small producers by evaluating the Rural Business Development (RBD) program of the Millennium Challenge Corporation in Nicaragua for small plantain producers. The RBD program offered matching funds covering up to 30% of the cost of two years of inputs, extension services, and diesel-powered micro-sprinkler irrigation for individual farms. In order to estimate the average impact of the RBD program on its beneficiaries, we combine model selection via the LASSO with doubly robust treatment effect estimation as applied to two years of panel data for 146 producers. We find that the program had substantial impacts on plantain revenue and production, while achieving nearly complete irrigation coverage of plantain land among beneficiaries. We find no discernible impact on household expenditure.

Suggested Citation

  • Mullally, Conner & Chakravarty, Shourish, 2018. "Are Matching Funds for Smallholder Irrigation Money Well Spent?," SocArXiv x5vmz_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:x5vmz_v1
    DOI: 10.31219/osf.io/x5vmz_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5968f4156c613b022b993bd4/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/x5vmz_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Michael L., 2008. "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1481-1495.
    2. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    3. Ximena V. Del Carpio & Norman Loayza & Gayatri Datar, 2011. "Is Irrigation Rehabilitation Good for Poor Farmers? An Impact Evaluation of a Non‐Experimental Irrigation Project in Peru," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(2), pages 449-473, June.
    4. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    5. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    6. Zhu, Mu & Ghodsi, Ali, 2006. "Automatic dimensionality selection from the scree plot via the use of profile likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 918-930, November.
    7. Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017. "Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges," American Economic Review, American Economic Association, vol. 107(5), pages 278-281, May.
    8. Fitsum Hagos & Gayathri Jayasinghe & Seleshi Bekele Awulachew & Mekonnen Loulseged & Aster Denekew Yilma, 2012. "Agricultural water management and poverty in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 43, pages 99-111, November.
    9. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    10. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    11. Dillon, Andrew, 2011. "The Effect of Irrigation on Poverty Reduction, Asset Accumulation, and Informal Insurance: Evidence from Northern Mali," World Development, Elsevier, vol. 39(12), pages 2165-2175.
    12. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    13. Andrew Dillon, 2011. "Do Differences in the Scale of Irrigation Projects Generate Different Impacts on Poverty and Production?," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(2), pages 474-492, June.
    14. Gustavo Crespi & Gabriela Dutrénit (ed.), 2014. "Science, Technology and Innovation Policies for Development," Springer Books, Springer, edition 127, number 978-3-319-04108-7, March.
    15. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mullally, Conner & Chakravarty, Shourish, 2018. "Are matching funds for smallholder irrigation money well spent?," Food Policy, Elsevier, vol. 76(C), pages 70-80.
    2. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    3. Garbero, Alessandra & Songsermsawas, Tisorn, 2016. "Impact of modern irrigation on household production and welfare outcomes: Evidence from the PASIDP project in Ethiopia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235949, Agricultural and Applied Economics Association.
    4. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
    5. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    6. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    7. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
    8. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
    9. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    10. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    11. Vira Semenova, 2020. "Generalized Lee Bounds," Papers 2008.12720, arXiv.org, revised Feb 2023.
    12. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    13. D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
    14. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    15. Mekonnen, Dawit & Abate, Gashaw & Yimam, Seid, 2021. "Irrigation and Agricultural Transformation in Ethiopia," 2021 Conference, August 17-31, 2021, Virtual 315339, International Association of Agricultural Economists.
    16. McIntosh, Craig & Zeitlin, Andrew, 2022. "Using household grants to benchmark the cost effectiveness of a USAID workforce readiness program," Journal of Development Economics, Elsevier, vol. 157(C).
    17. Tobias A. Jopp, 2018. "On the economics of forced labour. Did the employment of Prisoners-of-War depress German coal mining productivity in World War I?," Working Papers 0132, European Historical Economics Society (EHES).
    18. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    19. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.
    20. Martin, Stephen & Claxton, Karl & Lomas, James & Longo, Francesco, 2023. "The impact of different types of NHS expenditure on health: Marginal cost per QALY estimates for England for 2016/17," Health Policy, Elsevier, vol. 132(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:x5vmz_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.